首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various fullerene C60‐proteins such as C60‐myoglobin (C60‐Mb), C60‐hemoglobin (C60‐Hb) and C60‐gliadin, coated piezoelectric quartz crystals were prepared and applied in piezoelectric quartz crystal immunosensors for protein‐antibodies such as anti‐myoglobin (Anti‐Mb), anti‐hemoglobin (Anti‐Hb) and anti‐gliadin respectively. The immobilizations of myoglobin, hemoglobin and gliadin onto Fullerene C60 were studied with a C60‐coated piezoelectric crystal detection system, respectively. The partially irreversible frequency responses for theses proteins were observed by a desorption study, implying that C60 can strongly adsorb these proteins. Thus, immobilized C60‐Mb, C60‐Hb and C60‐gliadin coating materials were successfully prepared and identified with FTIR spectrometry. The C60‐Mb, C60‐Hb and C60‐gliadin coated piezoelectric (PZ) quartz crystal immunosensors with homemade computer interfaces for signal acquisition and data processing were developed and applied for detection of Anti‐Mb, Anti‐Hb and anti‐gliadin respectively. The C60‐protein coated PZ immunosensors for Anti‐Mb, Anti‐Hb and antigliadin exhibited linear frequency responses to the concentrations of theses anti‐proteins with sensitivities of 1.43 × 103, 2.59 × 103 and 8.05 × 103 Hz/(mg/mL) respectively. The detection limits of these PZ‐immunosensors were 4.36 × 10?3, 3.23 × 10?3 and 1.98 × 10?3 mg/mL for Anti‐Mb, Anti‐Hb and anti‐gliadin respectively. Effects of pH and temperature on the frequency responses of the anti‐protein PZ‐immunosensors were also investigated. The optimum pH of these anti‐proteins and the optimum temperature for the PZ‐immunosensors were observed at pH = 7 and around 30 °C respectively. The interferences of various common species in human blood, e.g., cysteine, tyrosine, urea, glucose, ascorbic acid and metal ions, to these anti‐protein PZ‐immunosensors were also investigated respectively. These species showed nearly no interference or quite small interference with the anti‐protein PZ‐immunosensors. The reproducibility and lifetime of these immobilized C60‐protein coated PZ crystal immunosensors were also investigated and discussed.  相似文献   

2.
The development of piezoelectric (PZ) quartz crystal and surface acoustic wave (SAW) biosensors based on fullerene C60 and immobilized C60-enzymes/antibodies/proteins for the detection of various biological species are reported. The C60 coated piezoelectric crystal sensors can be applied to the study of interactions between fullerene C60 and some biological species, such as enzymes, antibodies, proteins and heparin. The partial irreversible responses for some biospecies from C60 molecules were observed by the desorption study which implied that C60 could chemically react with these biological species. Thus, immobilized biological species, e.g. C60-GOD, C60-catalase, C60-urease, C60-lipase, C60-anti IgG, C60-heparin, C60-Hb, C60-Mb and C60-anti-Hb were successfully prepared. The immobilized C60-GOD, C60-catalase, C60-urease, C60-anti-IgG and C60-anti-Hb were employed as adsorbents onto quartz crystal of various piezoelectric biosensors to detect glucose, H2O2, urea, IgG, and hemoglobin respectively. The immobilized C60-lipase was applied to distinguishably catalyze the hydrolysis of some optical isomers such as L- and D-phenyalanine methyl ester and to determine these optical isomers. The immobilized C60-heparin was employed as a good inhibitor for blood clotting like solvated heparin. The H2O2 bio-sensor was set up with the immobilized C60-catalase to detect oxygen, the product of the hydrolysis of H2O2 by C60-catalase. The immobilized C60-GOD enzyme piezoelectric glucose sensor exhibited a good sensitivity and a good lower limit for glucose. A piezoelectric crystal urea biosensor based on immobilized C60-urease was also prepared to detect urea. Comparison between solvated and immobilized enzymes used for biosensors was also made. The C60-anti IgG or C60-anti-Hb coated IgG piezoelectric crystal sensors exhibited good sensitivity, selectivity and repeatability for IgG or hemoglobin. Fullerene C60-Hb and C60-myoglobin (C60-Mb) coated surface acoustic wave (SAW) immunosensors were prepared to detect the anti-hemoglobin (anti-Hb) and anti-myoglobin (anti-Mb) antibody, respectively. An electrochemical SAW (ESAW) detection system was also developed to detect glucose in aqueous solutions.  相似文献   

3.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

4.
The interaction between fullerene C60 and catalase enzyme was studied with a fullerene C60‐coated piezoelectric (PZ) quartz crystal sensor. The partially irreversible response of the C60‐coated PZ crystal sensor for catalase was observed by the desorption study, which implied that C60 could chemically react with catalase. Thus, immobilized fullerene C60‐catalase enzyme was synthesized and applied in determining hydrogen peroxide in aqueous solutions. An oxygen electrode detector with the immobilized C60‐catalase was also employed to detect oxygen, a product of the hydrolysis of hydrogen peroxide which was catalyzed by the C60‐catalase. The oxygen electrode/C60‐catalase detection system exhibited linear responses to the concentration of hydrogen peroxide and amount of immobilized C60‐catalase enzyme that was used. The effects of pH and temperature on the activity of the immobilized C60‐catalase enzyme were also investigated. Optimum pH at 7.0 and optimum temperature at 25 °C for activity of the insoluble immobilized C60‐catalase enzyme were found. The immobilized C60‐catalase enzyme could be reused with good repeatability of the activity. The lifetime of the immobilized C60‐catalase enzyme was long enough with an activity of 93% after 95 days. The immobilized C60‐catalase enzyme was also applied in determining glucose which was oxidized with glucose oxidase resulting in producing hydrogen peroxide, followed by detecting hydrogen peroxide with the oxygen electrode/C60‐catalase detection system.  相似文献   

5.
A C60‐polyphenylacetylene (C60‐PPA) and polyvinylpyrrolidone (PVP) coated two‐channel surface acoustic wave (SAW) crystal gas sensor with a homemade computer interface for data acquisition and data processing was developed and employed to detect carbon disulfide (CS2) and methanol (CH3OH) vapors in polymer plants. The frequency of surface acoustic wave oscillator decreases due to the adsorption of gas molecules on the coated materials of the SAW sensor. Six coating materials (C60‐PPA, nafion, PPA, crytand [2,2], polyethene glycol and PVP) were used to adsorb and detect carbon disulfide and methanol gases. Adsorption of all the six coating materials to CS2 and CH3OH was found to be physical adsorption. The C60‐PPA coated SAW detector exhibited more sensitive to CS2 than the other coating materials. In contrast, the PVP coated SAW detector was more sensitive to CH3OH than the other coating materials. With the two‐channel SAW sensor, the C60‐PPA coated SAW showed a good detection limit of 0.4 ppm and good reproducibility with RSD of 3.37 % (n=10) for CS2. Similarly, the PVP coated SAW also showed a good detection limit of 0.05 ppm and good reproducibility, with RSD of 0.86 % (n=10) for CH3OH. The interference effect of other organic molecules on the SAW detection system was negligible, except for the irreversible adsorption of C60‐PPA to propylamine. The frequency signals from the two‐channel SAW sensor array C60‐PPA and PVP coatings were processed by a back‐propagation artificial neural network (BPN) and multiple regression analysis (MRA). Thus a two‐channel SAW sensor array with BPN and MRA has been successfully applied for the qualitative and quantitative analyses of CS2 and CH3OH in mixtures.  相似文献   

6.
《Electroanalysis》2003,15(11):982-986
Electrochemically stable fullerene films made from cationic surfactant DDAB containing C60 on a glassy carbon electrode were produced in an aqueous solution, and electrocatalysis of some biomacromolecules at C60 / DDAB films was studied.  相似文献   

7.
Modeling of the addition of various radicals to C60 fullerene is currently an active research area. However, the radicals considered are not able to adequately model polymeric radicals. In this work, we have performed a theoretical study of the possible reactions of C60 fullerene with 1‐n‐phenylpropyl radicals, which are used to model polystyrene radicals. Several possible ways of subsequent addition of up to four 1‐phenylpropyl radicals to C60 have been analyzed, the structures of the intermediates have been defined and thermal properties, such as the activation enthalpies of the corresponding reactions, have been calculated using density functional theory with the approximation of PBE/3z. It is shown that the topology of the spin density distribution on the fullerenyl radical causes regioselectivity for further radical addition. According to the energetic characteristics of the reactions, we assume the possibility of formation of products of one‐, two‐, three‐, and four‐ addition of the growth radical to the fullerene core in radical polymerization of styrene in the presence of C60 fullerene. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

9.
The 2‐(hydroxymethyl)pyridine modified C60 (PY‐C60) and methoxydiglycol modified C60 (MDG‐C60) are synthesized using Bingel‐Hirsch reaction and characterized by nuclear magnetic resonance (NMR) and mass spectra. PY‐C60 and MDG‐C60 can bind to glucose oxidase (GOx) and quench the fluorescence of tryptophan (Trp) residue in GOx through static mechanism. The conformation of GOx is disturbed after formation of complex with these fullerene derivatives. Kinetic analysis indicates that PY‐C60 and MDG‐C60 may affect the catalytic activity of GOx with a partial mixed‐type inhibition mechanism. In the plasma glucose concentration range (3.6–5.2 mmol·L?1), PY‐C60 may significantly accelerate the catalytic velocity of GOx, however, MDG‐C60 exerts almost no obvious change to the initial velocity of GOx, suggesting that elaborate design of molecular structure of fullerene derivative is very important for regulating the biological activity of fullerene‐enzyme complex.  相似文献   

10.
The catalytic hydrogenation of C60 on Ru, Rh and Ir produced C60H18 mainly, while Pd, Pt, Co and Ni catalysts gave C60H36 principally. Very little activity was observed on Au and Fe. The higher hydrogenated fullerene obtained on Pd, Pt, Co and Ni was ascribed to the smaller % d-character of the metallic bond, on which the fullerene and hydrogen may more strongly be adsorbed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The direct electrochemistry of glucose oxidase (GOD) immobilized on the designed titanium carbide‐Au nanoparticles‐fullerene C60 composite film modified glassy carbon electrode (TiC‐AuNPs‐C60/GCE) and its biosensing for glucose were investigated. UV‐visible and Fourier‐transform infrared spectra of the resulting GOD/TiC‐AuNPs‐C60 composite film suggested that the immobilized GOD retained its original structure. The direct electron transfer behaviors of immobilized GOD at the GOD/TiC‐AuNPs‐C60/GCE were investigated by cyclic voltammetry in which a pair of well‐defined, quasi‐reversible redox peaks with the formal potential (E0′) of ‐0.484 V (vs. SCE) in phosphate buffer solution (0.05 M, pH 7.0) at the scan rate of 100 mV·s?1 were obtained. The proposed GOD modified electrode exhibited an excellent electrocatalytic activity to the reduction of glucose, and the currents of glucose reduction peak were linearly related to glucose concentration in a wider linearity range from 5.0 × 10?6 to 1.6 × 10?4 M with a correlation coefficient of 0.9965 and a detection limit of 2.0 × 10?6 M (S/N = 3). The sensitivity and the apparent Michaelis‐Menten constant (KMapp) were determined to be 149.3 μA·mM?1·cm?2 and 6.2 × 10?5 M, respectively. Thus, the protocol will have potential application in studying the electron transfer of enzyme and the design of novel electrochemical biosensors.  相似文献   

12.
《Electroanalysis》2006,18(22):2194-2201
A new amperometric immunobiosensor for carcinoembryonic antigen (CEA) determination in human serum was developed via encapsulation of horseradish peroxidase‐labeled carcinoembryonic antibody (HRP‐anti‐CEA) in a gold nanoparticles/DNA composite architecture. The presences of gold nanoparticles provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody–antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐CEA and CEA in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface. Under optimal conditions, the current change obtained from the labeled HRP relative to H2O2 system was proportional to the CEA concentration in two linear ranges from 0.5 to 15 ng/mL and 15 to 300 ng/mL with a detection limit of 0.1 ng/mL (at 3δ). The precision and reproducibility are acceptable with the intraassay CV of 6.3% and 4.7% at 8 and 60 ng/mL CEA, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 9 days. Moreover, the proposed immunosensors were used to analyze CEA in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting CEA in the clinical diagnosis.  相似文献   

13.
Various reusable and sensitive piezoelectric (PZ) quartz crystal membrane sensors with home‐made computer interfaces for signal acquisition and data processing were developed to detect organic/inorganic vapors and organic/inorganic/biologic species in solutions, respectively. Fullerene(C60), fullerene derivatives and artificial macrocyclic polyethers, e.g., crown ethers and cryptands, were synthesized and applied as coating materials on quartz crystals of the PZ crystal sensors. The oscillating frequency of the quartz crystal decreased due to the adsorption of organic or inorganic species onto coating material molecules on the crystal surface. The crown ether‐coated PZ crystal gas detector exhibited high sensitivity with a frequency shift range of 10–340 Hz/(mg/L) for polar organic gases, a short response time (< 2.0 min.), good selectivity, and good reproducibility. The Ag(I)/crptand22 and Ru(III) / crptand22 coated PZ gas detectors were also prepared for nonpolar organic vapors, e.g., alkynes and alkenes. The frequency shifts of the nonpolar PZ sensors were in the order: alkynes > alkenes > alkanes. A Ti(IV)/Cryptand22‐coated PZ crystal sensor was also developed to detect the inorganic air pollutants, e.g., CO and NO2. A piezoelectric gas sensor for both polar/nonpolar organic vapors based on C60‐cryptand22 was also prepared. The cryptand22‐coated PZ gas sensor was also employed as a GC detector for organic molecules. The cryptand22‐coated piezoelectric GC detectors compared well with the commercial thermal conductivity detector (TCD). The interaction between fullerene C60 and organic molecules was studied with a fullerene coated PZ gas detector. A multi‐channel PZ organic gas detector with PCA(Principal Component Analysis) and BPN (Back Propagation Neural) analysis methods was developed. Various liquid piezoelectric crystal sensors based on long‐chain macrocyclic polyethers, e.g., C10H21‐dibenzo‐16‐crown‐5, C18H37‐benzo‐15‐crown‐5, (C17CO)2‐cyptand22 and fullerene derivatives, e.g., C60‐NH‐cryptand22 and dibenzo‐16‐crown‐5‐C60, were also developed as HPLC detectors for metal ions, anions, and various organic compounds in solutions. The sensitive and highly selective PZ bio‐sensors based on enzymes, polyvinylaldehyde, polycinnaldehyde‐C60 and C60‐cryptand22 were developed to detect various biologic species, e.g., proteins, glucose, and urea. A quite sensitive EQCM (Electrochemical Quartz Crystal Micro‐balance) detection system was also developed for detection of trace heavy metal ions.  相似文献   

14.
The article describes the use of a fullerene (C60)‐β‐cyclodextrin conjugate, synthesized via 1,3dipolar cycloaddition, for the ultrasensitive electrochemical detection of p‐nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p‐nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p‐nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10?9 mol L?1 to 4.2×10?7 mol L?1 and the detection limit was calculated to be 1.2×10?9 mol L?1.  相似文献   

15.
Precise control of the molecular arrangements at the interface between the electron donor and acceptor in mixed bulk heterojunctions (BHJs) remains challenging, despite the correlation between structural characteristics and efficiency in organic photovoltaics (OPVs). This study reveals that the substitution patterns of linear and branched alkyl side chains on electron‐donating/‐accepting alternating copolymers can control the positions of an acceptor molecule (C60) around the π‐conjugated main chains in mixed BHJs. Two‐dimensional solid‐state NMR demonstrates a marked difference in the location of C60 in the blend films. A copolymer with an electron‐accepting unit positioned in close proximity to C60 demonstrated higher OPV performance in combination with various fullerene derivatives. This molecular design offers precise control over the interfacial molecular structure, thereby paving the way for overcoming the current limitations of OPVs comprising mixed BHJs.  相似文献   

16.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

17.
A novel BOPHY–fullerene C60 dyad ( BP-C60 ) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C60 consists of a BOPHY fluorophore covalently attached to a C60 moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C60 subunit elicits the photodynamic action. This fluorophore–fullerene cycloadduct, obtained by a straightforward synthetic route, was fully characterized and compared with its individual counterparts. The restricted rotation around the single bond connecting the BOPHY and pyrrolidine moieties led to the formation of two atropisomers. Spectroscopic, electrochemical, and computational studies disclose an efficient photoinduced energy/electron transfer process from BOPHY to fullerene C60. Photodynamic studies indicate that BP-C60 produces ROS by both photomechanisms (type I and type II). Moreover, the dyad exhibits higher ROS production efficiency than its individual constitutional components. Preliminary screening of photodynamic inactivation on bacteria models (Staphylococcus aureus and Escherichia coli) demonstrated the ability of this dyad to be used as a heavy-atom-free PS. To the best of our knowledge, this is the first time that not only a BOPHY–fullerene C60 dyad is reported, but also that a BOPHY derivative is applied to photoinactivate microorganisms. This study lays the foundations for the development of new BOPHY-based PSs with plausible applications in the medical field.  相似文献   

18.
Radical anion salt {cryptand[2.2.2] (K+)}2(bispheroid)2??3.5C6H4Cl2 ( 1 ) of the double‐caged fullerene C60 derivative, in which fullerene cages are linked by a cyclobutane bridging cycle and additionally by a pyrrolizidine moiety, was obtained. Each fullerene cage in this derivative accepts one electron on reduction, thus forming the (bispheroid)2? dianions with two interacting S=1/2 spins on the neighboring cages. Low‐temperature magnetic measurements reveal a singlet ground state of the bispheroid dianions whereas triplet contributions prevail at increased temperature. An estimated exchange interaction between two spins J/kB=?78 K in 1 indicates strong magnetic coupling between them, nearly two times higher than that (J/kB=?44.7 K) in previously studied (C60?)2 dimers linked via a cyclobutane bridge only. The enhancement of magnetic coupling in 1 can be explained by a shorter distance between the fullerene cages and, possibly, an additional channel for the magnetic exchange provided by a pyrrolizidine bridge. Quantum‐chemical calculations of the lowest electronic state of the dianions by means of multi‐configuration quasi‐degenerate perturbation theory support the experimental findings.  相似文献   

19.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

20.
A series of photoresponsive‐group‐containing nanorings hosts with 12~14 Å in diameter is designed by introducing different number of azo groups as the structural composition units. And the host–guest interactions between fullerene C60 and those nanoring hosts were investigated theoretically at M06‐2X/6‐31G(d)//M06‐L/MIDI! and wB97X‐D/6‐31G(d) levels. Analysis on geometrical characteristics and host–guest binding energies revealed that the designed nanoring molecule (labeled as 7 ) which is composed by seven azo groups and seven phenyls is the most feasible host for encapsulation of C60 guest among all candidates. Moreover, inferring from the simulated UV‐vis‐NIR spectroscopy, the C60 guest could be facilely released from the cavity of the host 7 via configuration transformation between trans‐form and cis‐form of the host under the 563 nm photoirradiation. Additionally, the frontier orbital features, weak interaction regions, infrared, and NMR spectra of the C60@7 host–guest complex have also been investigated theoretically. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号