首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Four new saponins, yemuosides YM17–YM20 ( 1 – 4 , resp.), were isolated from the rattan of Stauntonia chinensis DC. (Lardizabalaceae) along with a known saponin, nipponoside D ( 5 ). Their structures were elucidated by spectroscopic analysis and chemical evidence as 20,30‐dihydroxy‐29‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), 20,29‐dihydroxy‐30‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), 29‐hydroxy‐30‐norolean‐20(21)‐enolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 3 ), 29‐hydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ), and 23,29‐dihydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 5 ). Yemuoside YM17–YM19 ( 1 – 3 , resp.) contain novel unusual nortriterpene aglycones.  相似文献   

2.
Two new triterpenoid glycosides, together with two new ergostane glycosides, umbellatosides A–D ( 1 – 4 , resp.), have been isolated from the leaves of Hydrocotyle umbellata L. Their structures were established by 2D‐NMR spectroscopic techniques (1H,1H‐COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3β,22β‐dihydroxy‐3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucuronopyranosyl]olean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucuronopyranosyl]oleanolic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 2 ), (3β,11α,26)‐ergosta‐5,24(28)‐diene‐3,11,26‐triol 3‐O‐(β‐D ‐glucopyranosyl)‐11‐O‐(α‐L ‐rhamnopyranosyl)‐26‐Oβ‐D ‐glucopyranoside ( 3 ), and (3β,11α,21,26)‐ergosta‐5,24(28)‐diene‐3,11,21,26‐tetrol 3‐O‐(β‐D ‐glucopyranosyl)‐11‐O‐(α‐L ‐rhamnopyranosyl)‐26‐Oβ‐D ‐glucopyranoside ( 4 ).  相似文献   

3.
The revised structures of avenacosides A and B and a new sulfated steroidal saponin isolated from grains of Avena sativa L. were elucidated. Their structures and complete NMR assignments are based on 1D and 2D NMR studies and identified as nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐D‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (1), nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (2), and nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐6‐O‐sulfoglucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (3). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Five new di‐ and triglycosides, irigenin 7‐[Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 1 ), 6‐hydroxygenistein 4′‐[Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 2 ), nigricin 4′‐[Oβ‐D ‐glucopyanosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 3 ), nigricin 4′‐[Oβ‐D ‐glucopyanosyl‐(1→2)‐O‐[α‐L ‐rhamnopyranosyl‐(1→6)]‐β‐D ‐glucopyranoside] ( 4 ), and 7‐{4′‐{[2″‐O‐(4′′′′‐acetyl‐2′′′′‐methoxyphenyl)‐β‐D ‐glucopyranosyl]oxy}‐3′‐(β‐D ‐glucopyranosyloxy)phenyl]‐9‐methoxy‐8H‐1,3‐dioxolo[4,5‐g]‐[1 benzopyran‐8‐one‐] ( 5 ), along with a known compound, nigricin 4′‐(β‐D ‐glucopyranoside) ( 6 ), were isolated from the rhizomes of Iris germanica. The structures of these compounds were established by spectroscopic methods, including 2D NMR spectroscopic techniques.  相似文献   

5.
Three new dammarane‐type triterpene saponins, 1 – 3 , together with three known compounds, 4 – 6 , were isolated from the aerial parts of Gynostemma pentaphyllum (Thunb.) Makino . By means of chemical and spectroscopic methods, their structures were established as (20S)‐3β,20,21‐trihydroxydammara‐23,25‐diene 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐21‐Oβ‐D ‐glucopyranoside ( 1 ), (20R,23R)‐3β,20‐dihydroxy‐19‐oxodammar‐24‐en‐21‐oic acid 21,23‐lactone 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 2 ), and (21S,23S)‐3β,20ξ,21,26‐tetrahydroxy‐19‐oxo‐21,23‐epoxydammar‐24‐ene 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 3 ).  相似文献   

6.
Two novel noroleanane saponins, tubeimoside A ( 1 ) and tubeimoside B ( 2 ), and a new dammarane triterpene saponin, tubeimoside C ( 3 ), together with two known compounds, 4 and 5 , were isolated from the bulbs of Bolbostemma paniculatum (Maxim .) Franquet . Compound 4 was found in this genus for the first time. Based on spectroscopic methods, including IR, NMR (DEPT, COSY, HMQC, HMBC, and TOCSY), and MS experiments, and chemical reactions, the structures of the new compounds were elucidated as 3β‐[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyloxy]‐2β,23‐dihydroxy‐28‐norolean‐12‐en‐16‐one ( 1 ), 3β‐[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyloxy]‐2β,23‐dihydroxy‐28‐norolean‐12‐en‐22‐one ( 2 ), (3β,7β)‐7,18,20‐trihydroxydammar‐24‐en‐3‐yl 2‐Oα‐L ‐arabinopyranosyl‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

7.
Two new monodesmosidic cycloartane triterpene glycosides, depressosides E and F, and two new flavonol glycosides, depressonol A and B, were isolated from the butanol‐soluble part of the EtOH extract of Corchorus depressus L . The structures of the new compounds were elucidated as (22R,24S)‐22,25‐epoxy‐9,19‐cyclolanostane‐3β,16β,24‐triol 3‐[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranoside] ( 1 ), (22R,24S)‐22,25‐epoxy‐9,19‐cyclolanostane‐3β,16β,24‐triol 3‐[α‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranoside] ( 2 ), kaempferol 3‐[β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside] 7‐[α‐L ‐arabinofuranoside] ( 4 ), and kaempferol 3‐[β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranoside] 7‐[α‐L ‐arabinofuranoside] ( 5 ) on the basis of chemical evidence and detailed spectroscopic studies.  相似文献   

8.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

9.
Four new triterpenoid glycosides named asiaticoside C ( 1 ), D ( 2 ), E ( 3 ), and F ( 4 ) were isolated from the BuOH fraction of the EtOH extract of whole plants of Centella asiatica, together with three known compounds, asiaticoside ( 5 ), madecassoside ( 6 ), and scheffuroside B ( 7 ). Based on FAB‐MS, IR, 1H‐ and 13C‐NMR, and 2D‐NMR data (HMQC, HMBC, COSY), the structures of the new compounds were determined as (2α,3β,4α)‐23‐(acetyloxy)‐2,3‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), (2α,3β)‐2,3‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), asiatic acid 6‐Oβ‐D ‐glycopyranosyl‐β‐D ‐glucopyranosyl ester ( 3 ), (3β,4α)‐3,23‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ).  相似文献   

10.
A new furostanol saponin, sisalasaponin C ( 1 ), and a new spirostanol saponin, sisalasaponin D ( 2 ), were isolated from the fresh leaves of Agave sisalana, along with three other known steroidal saponins and two stilbenes. Their structures were identified as (3β,5α,6α,22α,25R)‐3,26‐bis[(β‐D ‐glucopyrano‐ syl)oxy]‐22‐hydroxyfurostan‐6‐yl β‐D ‐glucopyranoside ( 1 ), (3β,5α,25R)‐12‐oxospirostan‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,6α,22α,25R)‐22‐methoxyfurostane‐3,6,26‐triyl tris‐β‐D ‐glucopyranoside, cantalasaponin‐1, polianthoside D, (E)‐ and (Z)‐2,3,4′,5‐tetrahydroxystilbene 2‐O‐β‐D ‐glucopyranosides. The last three known compounds were isolated from the fresh leaves of Agavaceae for the first time. The structures of the new compounds were elucidated by detailed spectroscopic analysis, including 1D‐ and 2D‐NMR experiments, and chemical techniques.  相似文献   

11.
From the MeOH extract of Salvia moorcroftiana Wall. (Lamiaceae), four new compounds, the two flavonoid glycosides genkwanin 4′‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐galactopyranoside] ( 1 ) and genkwanin 4′‐[Oα‐L ‐arabinopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside] ( 2 ), and the two benzene derivatives 4‐hydroxy‐2‐isopropyl‐5‐methylphenyl Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranoside ( 3 ) and nonyl 4‐hydroxybenzoate ( 4 ), were isolated in addition to two known compounds. The structures of all new compounds were determined by 1D and 2D homonuclear and heteronuclear NMR spectroscopy and by comparison with published data.  相似文献   

12.
Three new phenylethanoid glycosides, named digicilisides A – C ( 1  –  3 , resp.), have been isolated from the roots of Digitalis ciliata, along with five known phenylethanoid glycosides. The structures of 1  –  3 were identified as 2‐(4‐hydroxy‐3‐methoxyphenyl)ethyl β‐d ‐glucopyranosyl‐(1→3)‐[α‐l ‐rhamnopyranosyl‐(1→6)]‐4‐O‐[(E)‐feruloyl]‐β‐d ‐glucopyranoside ( 1 ), 2‐(3,4‐dihydroxyphenyl)ethyl α‐l ‐arabinopyranosyl‐(1→2)‐[β‐d ‐glucopyranosyl‐(1→3)]‐[α‐l ‐rhamnopyranosyl‐(1→6)]‐4‐O‐[(E)‐feruloyl]‐β‐d ‐glucopyranoside ( 2 ), and 2‐(3,4‐dihydroxyphenyl)ethyl β‐d ‐glucopyranosyl‐(1→3)‐{6‐O‐[(E)‐feruloyl]‐β‐d ‐glucopyranosyl‐(1→6)}‐4‐O‐[(E)‐caffeoyl]‐β‐d ‐glucopyranoside ( 3 ).  相似文献   

13.
Two new oleanolic acid‐type triterpenoid saponins, raddeanosides R22 and R23 ( 1 and 2 , resp.), together with four known saponins were isolated from the rhizome of Anemone raddeana Regel. The structures of the new compounds were elucidated as oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 1 ) and oleanolic acid 3‐Oα‐L ‐arabinopyranosyl(1→3)‐α‐L ‐rhamnopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 2 ). The four known compounds were identified as oleanolic acid 3‐Oα‐L ‐arabinopyranoside ( 3 ), oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→4)‐α‐L ‐arabinopyranoside ( 4 ), hederasaponin B ( 5 ), and hederacholchiside E ( 6 ) on the basis of chemical and spectral evidences. Compound 4 is reported for the first time from the Anemone genus, while the other three known compounds have been already found in this plant.  相似文献   

14.
Two dammarane‐type saponins with a novel aglycone derived from the parent 16,22‐epoxy‐24‐methylidenedammarane and lotoside A, a new lotogenin derivative, were isolated from the MeOH extract of the stem bark of the Brazilian medicinal plant Zizyphus joazeiro, in addition to the known saponin 3β‐{{O‐[O‐[α‐L ‐arabinofuranosyl‐(1→2)]‐O‐[β‐D ‐glucopyranosyl‐(1→3)]]‐α‐L ‐arabinopyranosyl}oxy}jujubogenin ( 1 ). The structures of the new compounds were determined as 16,22‐epoxy‐3β‐[(β‐D ‐glucopyranosyl)oxy]‐24‐methylidenedammarane‐15α,16α,20β‐triol ( 2 ), 16,22‐epoxy‐3β‐{{O‐[O‐[β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐apiofuranosyl‐(1→3)]]‐β‐D ‐glucopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}‐24‐methylidenedammarane‐15α,16α,20β‐triol ( 3 ), and 3β‐{{O‐[O‐[β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐apiofuranosyl‐(1→3)]]‐β‐D ‐glucopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}lotogenin ( 4 ) by means of 1D‐ and 2D‐NMR spectroscopy, as well as FAB mass spectrometry. For the novel aglycone, we propose the name joazeirogenin and, for the new saponins, joazeiroside A ( 2 ) and B ( 3 ). Joazeirogenin was found to be 16,22‐epoxy‐24‐methylidenedammarane‐3β,15α,16α,20β‐tetrol.  相似文献   

15.
Phytochemical investigation from the stems of Alibertia edulis led to the isolation and identification of a new iridoid 6β‐hydroxy‐7‐epigardoside methyl ester ( 1 ) and a new saponin 3βO‐[α‐L ‐rhamnopyranosyl‐(1→2)‐O‐β‐D ‐glucopyranosyl‐(1→2)‐O‐β‐D ‐glucopyranosyl]‐28‐O‐β‐D ‐glucopyranoside pomolate ( 2 ), along with three known compounds, shanzhiside methyl ester ( 3 ), ixoside ( 4 ), and 3,4,5‐trimethoxyphenyl 1‐Oβ‐D ‐apiofuranosyl‐(1→6)‐O‐β‐D ‐glucopyranoside ( 5 ). The structures of 1 and 2 were established on the basis of their spectroscopic data. Iridoid 1 and saponin 2 exhibited moderate inhibitory activities against Candida albicans and C. krusei in a dilution assay.  相似文献   

16.
Two new C22‐steroidal lactone glycosides, ypsilactosides A ( 1 ) and B ( 2 ), were isolated from the EtOH extract of the whole plant of Ypsilandra thibetica. Their structures were established as (3β,5α,16β,20S)‐3,16‐dihydroxy‐6‐oxopregnane‐20‐carboxylic acid γ‐lactone 3‐(β‐D ‐glucopyranoside) ( 1 ) and (3β,16β)‐3,16‐dihydroxypregna‐5,20‐diene‐20‐carboxylic acid γ‐lactone 3‐{Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 2 ) on the basis of extensive spectroscopic analyses and chemical degradations.  相似文献   

17.
Phytochemical analyses were carried out on the rhizomes of Clintonia udensis (Liliaceae) with particular attention paid to the steroidal glycoside constituents, resulting in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A ( 1 ), B ( 2 ), and C ( 3 ). On the basis of their spectroscopic data, including 2D‐NMR spectroscopy, in combination with acetylation and hydrolytic cleavage, the structures of 1 – 3 were determined to be (1β,3β,23S,24S,25R)‐1,23,24‐trihydroxyspirost‐5‐en‐3‐yl Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 1 ), (1β,3β,23S,24S)‐3,21,23,24‐tetrahydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 2 ), and (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(6‐deoxy‐β‐D ‐gulopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

18.
Three new kaempferol glycosides, kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranosyl‐7‐Oα‐L ‐rhamnopyranoside ( 1 ), kaempferol 3‐O‐β‐D ‐galactopyranosyl‐7‐Oβ‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside ( 2 ), and kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranosyl‐7‐Oβ‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside ( 3 ), were isolated from the whole herbs of Cardamine leucantha, along with three known kaempferol glycosides, kaempferol 7‐Oα‐L ‐rhamnopyranoside, kaempferitrin, and kaempferol 3‐Oβ‐D ‐galactopyranosyl‐7‐Oα‐L ‐rhamnopyranoside. Their structures were elucidated on the basis of spectroscopic methods.  相似文献   

19.
Five new triterpene saponins 1 – 5 were isolated from the roots of Muraltia ononidifolia E. Mey along with the two known saponins 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐[Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester and 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester (medicagenic acid=(4α,2β,3β)‐2,3‐dihydroxyolean‐12‐ene‐23,28‐dioic acid). Their structures were elucidated mainly by spectroscopic experiments, including 2D‐NMR techniques, as 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐[Oβ‐ D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester ( 1 ), 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐{[Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl} ester ( 2 ), 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl} ester ( 3 ), 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester ( 4 ), and 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid ( 5 ).  相似文献   

20.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号