首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a rapid and simple method for sensing estradiol by electro‐oxidation on a multi‐walled carbon nanotube (MWCNT) and gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). Compared with a bare GCE, AuNP/GCE and MWCNT/GCE, the composite modified GCE shows an enhanced response to estradiol in 0.1 M phosphate buffer solution. Experimental parameters, including pH and accumulation time for estradiol determination were optimised at AuNP/MWCNT/GCE. A pH of 7.0 was found to be optimum pH with an accumulation time of 5 minutes. Estradiol was determined by linear sweep voltammetry over a dynamic range up to 20 %mol L?1 and the limit of detection was estimated to be 7.0×10?8 mol L?1. The sensor was successfully applied to estradiol determination in tap water and waste water.  相似文献   

2.
The present study was aimed at investigating the use of a mixture multiwall carbon nanotube (MWCNT) and thionine (Th) dye in designing of a thionine‐based electrochemical biosensor containing catalase (Ct) enzyme (MWCNT‐Nafion‐Th/Ct) onto a glassy carbon electrode (GCE). The effects of pH, MWCNT concentration and thionine concentration on electrochemical response were explored for optimum analytical performance. The modified electrode exhibited a pair of well‐defined, quasi‐reversible peaks at formal potential (Eo′) = ‐0.218 ± 0.017 V vs. Ag/AgCl corresponding to the Thox/Thred redox couples in the presence of MWCNT, Nafion, and Ct. The electrochemical parameters, including charge‐transfer coefficient (0.36), and apparent heterogeneous electron transfer rate constant (4.28 ± 0.26 s?1) were determined. Using differential pulse voltammetry, the prepared enzyme electrode exhibited a linear response to hydrogen peroxide (H2O2) in the range of 10.0‐100.0 μM with a detection limit 8.7 μM and a sensitivity of 6051.0 μA mM?1 cm?2.  相似文献   

3.
Within this paper, a glassy carbon electrode modified with single‐walled carbon nanotubes (SWCNTs?GCE) was prepared, and employed for the determination of clorsulon (Clo), which is a frequently used veterinary drug against common liver fluke. The comprehensive topographical and electrochemical characterizations of bare GCE and SWCNTs?GCE were performed by atomic force microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Significantly enhanced electrochemical characteristics of SWCNTs?GCE toward a ferrocyanide/ferricyanide redox couple was observed when compared to bare GCE. Further, the prepared sensor was applied for the voltammetric determination of Clo, which was electrochemically investigated for the first time in this work. Voltammetric experiments were performed using square‐wave voltammetry with optimized parameters in phosphate buffer solution, pH 6.8, which was selected as the most suitable medium for the determination of Clo. The corresponding current at approx. +1.1 V increased linearly with Clo concentration within two linear dynamic ranges of 0.75–4.00 μmol L?1 (R2=0.9934) and 4.00–15.00 μmol L?1 (R2=0.9942) with a sensitivity for the first calibration range of 0.76 μA L μmol?1, a limit of detection of 0.19 μmol L?1, and a limit of quantification of 0.64 μmol L?1. The developed method was subsequently applied for quantitative analysis of Clo in milk samples with results proving high repeatability and recovery.  相似文献   

4.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A system of Pt nanoparticles and poly(ortho‐phenylenediamine) film electrochemically deposited onto a glassy carbon electrode (GCE/PoPD/Pt) was fabricated. Scanning electron microscopy, Fourier‐transform infrared spectroscopy, and atomic force microscopy techniques were used to identify the surface characteristics of the composite electrode. The conductive polymers and Pt nanoparticles together resulted in a synergistic effect, and the new formed surface was highly active against polyphenolic structures. Rosmarinic acid (RA) and protocatechuic acid (PCA) are phenolic compounds found in plants, and they are used in many applications, particularly as pharmaceuticals. The GCE/PoPD/Pt was used for the simultaneous determination of RA and PCA in a pH 2.0 H2SO4 solution for the first time. The RA and PCA concentrations were determined using differential pulse voltammetry (DPV) and chronoamperometry. By the amperometry measurement, for RA and PCA, a linear relation was observed in the concentration ranges of 1–55 μmol L?1 and 1–60 μmol L?1, with detection limits of 0.5 μmol L?1 and 0.6 μmol L?1, respectively. In the simultaneous determination with DPV, the detection limits for both RA and PCA were calculated as 0.7 μmol L?1. The GCE/PoPD/Pt was successfully used for the simultaneous determination of RA and PCA in a real sample, and its accuracy was verified by high‐performance liquid chromatography studies.  相似文献   

6.
This work describes the development of a biosensor for paracetamol (PAR) determination based on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) and laccase enzyme (LAC), which was immobilized by means of covalent crosslinking using glutaraldehyde. Voltammetric investigations were carried out by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The biosensor was characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FT‐IR). The results showed that the use of MWCNT/LAC composite increased the sensor sensitivity, compared to bare glassy carbon electrode. Factors affecting the voltammetric signals such as pH, ionic strength, scan rate and interferents were assessed. Linear range, limit of detection (LOD) and limit of quantitation (LOQ) obtained were 10–320 μmol L?1, 7 μmol L?1 and 10 μmol L? 1, respectively. The developed biosensor was successfully applied to PAR determination in urine and pharmaceutical formulations samples, with recovery varying from 99.96 to 106.20 % in urine samples and a relative standard deviation less than 1.04 % for PAR determination in pharmaceutical formulations. Therefore, the MWCNT‐LAC/GCE exhibits excellent sensitivity and can be used to PAR determination as a viable alternative in clinical analyzes and quality control of pharmaceutical formulations, through a simple, fast and inexpensive methodology.  相似文献   

7.
An ionic liquid (IL) 1‐(3‐chloro‐2‐hydroxy‐propyl)‐3‐methylimidazolium trifluoroacetate was used as the modifier for the preparation of the modified carbon paste electrode (CPE). The IL‐CPE showed excellent electrocatalytic activity towards the oxidation of guanosine‐5′‐triphosphate (5′‐GTP) in a pH 5.0 Britton‐Robinson buffer solution. Due to the presence of high conductive IL on the electrode surface, the electrooxidation of 5′‐GTP was greatly promoted with a single well‐defined irreversible oxidation peak appeared. The electrode reaction was an adsorption‐controlled process and the electrochemical parameters of 5′‐GTP on IL‐CPE were calculated with the electron transfer coefficient (α) as 0.44, the electron transfer number (n) as 1.99, the apparent heterogeneous electron transfer rate constant (ks) as 2.21 × 10?9 s?1 and the surface coverage (ΓT) as 1.53 × 10?10 mol cm?2. Under the selected conditions a linear calibration curve between the oxidation peak currents and 5′‐GTP concentration was obtained in the range from 2.0 to 1000.0 μmol L?1 with the detection limit as 0.049 μmol L?1 (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the 5‘‐GTP detection without the interferences of coexisting substances and the practical application was checked by measurements of the artificial samples.  相似文献   

8.
Glassy carbon electrodes were modified with composites containing cobalt tetraaminophenoxy phthalocyanine nanoparticles (CoTAPhPc NP ), multi‐walled carbon nanotubes (MWCNT) and gold nanorods (AuNRs). The modified electrodes were studied for their electrocatalytic behavior towards the reduction of hydrogen peroxide. Phthalocyanine nanoparticles significantly improved electron transfer kinetics as compared to phthalocyanines which are not in the nanoparticle form when alone or in the presence of multiwalled carbon nanotubes (MWCNTs). CoTAPhPc NP ‐MWCNT‐GCE proved to be suitable for hydrogen peroxide detection with a catalytic rate constant of 3.45×103 M?1 s?1 and a detection limit of 1.61×10?7 M. Adsorption Gibbs free energy ΔGo was found to be ?19.22 kJ mol?1 for CoTAPhPc NP ‐MWCNT‐GCE.  相似文献   

9.
A highly sensitive and selective chemical sensor was prepared based on metallic copper‐copper oxides and zinc oxide decorated graphene oxide modified glassy carbon electrode (Cu?Zn/GO/GCE) through an easily electrochemical method for the quantification of bisphenol A (BPA). The composite electrode was characterized via scanning electron microscopy (SEM), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of BPA in Britton‐Robinson (BR) buffer solution (pH 7.1) was examined using cyclic voltammetry (CV). Under optimized conditions, the square wave voltammetry (SWV) response of Cu?Zn/GO/GCE towards BPA indicates two linear relationships within concentrations (3.0 nmol L?1?0.1 μmol L?1 and 0.35 μmol L?1?20.0 μmol L?) and has a low detection limit (0.88 nmol L?1). The proposed electrochemical sensor based on Cu?Zn/GO/GCE is both time and cost effective, has good reproducibility, high selectivity as well as stability for BPA determination. The developed composite electrode was used to detect BPA in various samples including baby feeding bottle, pacifier, water bottle and food storage container and satisfactory results were obtained with high recoveries.  相似文献   

10.
The voltammetric behaviour of two anthraquinone dyes such as Alizarin Red S (ARS) and Reactive blue 4 (RB4) was investigated at plain glassy carbon electrode (GCE), multiwalled carbon nano tube modified GCE (MWCNT/GCE) and zeolite modified GCE (ZE/GCE) using cyclic voltammetry. Effects of pH, scan rate and concentration were studied. The surface morphology of the modified electrode in the absence and presence of dye molecules was characterized by scanning electron microscopy (SEM). A systematic study on the variation of experimental parameters with differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived. MWCNT/GCE performed well among the three electrode systems and the limit of detection (LOD) was 0.036?µg?mL?1 for ARS and 0.05?µg?mL?1 for RB4 on this modified system. Suitability of the differential pulse stripping voltammetric method for the trace determination of textile dyes in effluents was also realized.  相似文献   

11.
Single‐wall carbon nanotubes (SWCNTs) were used as an immobilization matrix to incorporate [Ir(ppy)2(phen‐dione)](PF6) complex onto a glassy carbon electrode for the study of electrocatalytic reduction of periodate ion. Detailed preliminary electrochemical data for the Ir(III)‐complex in acetonitrile solution and for the modified GCE/SWCNTs/[Ir(ppy)2(phen‐dione)](PF6)/CGE are presented. The modified electrode was applied to selective amperometric detection of periodate through its electrocatalytic reduction to iodide at 0.200 V and pH 2.0. The use of amperometry resulted in two calibration plots over the concentration ranges of 1‐20 μM and 20‐450 μM, with a detection limit of 0.6 μM and sensitivity of 198 nA μM?1.  相似文献   

12.
The interactions of furazolidone (Fu) with double‐stranded calf thymus DNA (dsDNA) on the multi‐walled carbon nanotubes‐ionic liquid‐modified carbon paste electrode (MWCNT‐IL‐CPE) have been studied by cyclic voltammetry. In the presence of DNA, the cathodic peak current of Fu decreased and the peak potential shifted to a positive potential, indicating the intercalative interaction of Fu with DNA. The binding constant of Fu with DNA and stoichiometric coefficient has been determined according to the Hill's model. This electrochemical method was further applied to the determination of DNA. Two linear calibration curves were obtained for DNA detection in the concentration ranges of 0.03–0.10 and 0.10–4.0 μg l?1 with a detection limit of 0.027 μg l?1. The method was successfully applied to analyze Fu in serum samples.  相似文献   

13.
Selective dopamine (DA) determinations using porous‐carbon‐modified glassy carbon electrodes (GCE) in the presence of ascorbic acid (AA) were studied. The effects of structure textures and surface functional groups of the porous carbons on the electrochemical behavior of DA was analyzed based on both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements. The differential pulse voltammetry of DA on the modified GCE was determined in the presence of 400‐fold excess of AA, and the linear determination ranges of 0.05–0.99, 0.20–1.96, and 0.6–12.60 μM with the lowest detected concentrations of 4.5×10?3, 4.4×10?2, and 0.33 μM were obtained on the mesoporous carbon, mesoporous carbon with carboxylic and amino groups modified electrodes, respectively.  相似文献   

14.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

15.
In this work, a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes functionalized with carboxylic groups (MWCNT−COOH) was used to determine the hormone estrone in seawater samples. Modification of the electrode was optimized using three successive 10-μL aliquots of the MWCNT−COOH dispersion in ethanol (1 : 5 mL). The cyclic voltammetry results showed an oxidation peak at 0.59 V with characteristics of an irreversible process, pH dependent and controlled by adsorption of species. The results of square-wave voltammetry showed that the intensities of peak currents for the MWCNT−COOH/GCE were about 2.5 times higher than for GCE. The calibration curve showed a linearity of 0.9981 and a sensitivity of 0.1521 μA/mol L−1. The limits of detection and quantification were 0.117 and 0.392 μmol L−1, respectively. The recovery obtained using seawater samples was 91%, indicating the applicability of the method in marine environments.  相似文献   

16.
A new voltammetric sensor based on molecularly imprinted poly(acrylic acid)‐MWCNT nanocomposite (MIP‐MWCNT) drop‐coated onto glassy carbon electrode (GCE) was developed and applied to tramadol (TR) determination in pharmaceutical samples. The voltammetric sensor prepared by suspension of MIP‐MWCNT at 1 : 1 (w/w) ratio show an improved performance compared to unmodified GCE. The electrochemical method is based on preconcentration of tramadol onto MIP‐MWCNT modified GCE surface at ?1.5 V vs Ag/AgCl for 180 s in 0.1 Britton‐Robinson buffer (pH 8.0) at stirred solution. Upon preconcentration, the differential anodic voltammogram was recorded under the optimized condition giving rise to an analytical curve varying from 9.0 up to 30.0 μmol L?1 (R2=0.997) and limits of detection and quantification of 1.4 and 4.8 μmol L?1, respectively. The method precision was assessed in terms of intraday (n=6) and interday (two consecutive days) precision, giving relative standard deviations (RSD%) values between 2.8 to 7.4 %. Excipients usually found in pharmaceutical pills (magnesium stearate, microcrystalline cellulose, starch, and silica) and paracetamol were evaluated as potential interferents, however no interference was evidenced in TR determination. The method applicability was evaluated by TR analysis in pharmaceutical samples. Moreover, the method accuracy was attested by comparison of addition and recovery assays with a reference technique (high‐performance liquid chromatography).  相似文献   

17.
《Electroanalysis》2006,18(23):2385-2388
Electrochemical reduction of Deoxycholic acid (DCA), as important biological molecule has been studied in 0.05 M KH2PO4 aqueous methanol solution (1 : 1, v/v) at a multiwalled carbon nanotubes modified electrode. Based on cyclic voltammetry, Tafel plot, the possible mechanism of the electrochemical reduction of DCA was investigated, as well as DCA mechanical calculations. The transfer coefficient, α, the exchange current density, i0, the diffusion coefficient, D0 at the MWCNT modified GCE were determined as 0.505, 5.655×10?7 A/cm2 and 1.579×10?5 cm2/s, respectively. The results of chronoamperometric suggested that the reductive product of DCA was the corresponding hydroxymethyl compound in an over‐all four‐electron process.  相似文献   

18.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

19.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

20.
We report an innovative supramolecular architecture for bienzymatic glucose biosensing based on the non‐covalently functionalization of multi‐walled carbon nanotubes (MWCNTs) with two proteins, glucose oxidase (GOx) (to recognize glucose) and avidin (to allow the specific anchoring of biotinylated horseradish peroxidase (b‐HRP)). The optimum functionalization was obtained by sonicating for 10 min 0.50 mg mL?1 MWCNTs in a solution of 2.00 mg mL?1 GOx+1.00 mg mL?1avidin prepared in 50 : 50 v/v ethanol/water. The sensitivity to glucose for glassy carbon electrodes (GCE) modified with MWCNTs‐GOx‐avidin dispersion and b‐HRP (GCE/MWCNTs‐GOx‐avidin/b‐HRP), obtained from amperometric experiments performed at ?0.100 V in the presence of 5.0×10?4 M hydroquinone, was (4.8±0.3) μA mM?1 (r2=0.9986) and the detection limit was 1.2 μM. The reproducibility for 5 electrodes using the same MWCNTs/GOx‐avidin dispersion was 4.0 %, while the reproducibility for 3 different dispersions and 9 electrodes was 6.0 %. The GCE/MWCNT‐GOx‐avidin/b‐HRP was successfully used for the quantification of glucose in a pharmaceutical product and milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号