首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to obtain an adsorptive stripping voltammetric method for the Ce(III) determination at a carbon paste electrode, chemically modified with N'‐[(2‐hydroxyphenyl)methylidene]‐2‐furohydrazide (NHMF). The electroanalytical procedure comprised two steps: the Ce(III) chemical accumulation at ?200 mV followed by the electrochemical detection of the Ce(III)/NHMF complex, using anodic stripping voltammetry. The factors, influencing the adsorptive stripping performance, were optimized including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The resulting electrode demonstrated a linear response over a wide range of Ce(III) concentration (5.0–90 nmol dm?3). The detection limit was found to be 0.8 nmol dm?3 on the basis of a signal to noise ratio of 3. The precision for six determinations of 10 and 55 nmol dm?3 Ce(III) was 5.6% and 2.1% (relative standard deviation), respectively. Application of the procedure to the determination of cerium in phosphate rock and wastewater samples gave good results.  相似文献   

2.
《Electroanalysis》2005,17(8):719-723
A very sensitive and selective adsorptive cathodic stripping procedure for trace measurement of uranium is presented. The method is based on adsorptive accumulation of the uranium‐pyromellitic acid (benzene‐1,2,4,5‐tetracarboxylic acid) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species by voltammetric scan using differential pulse modulation. Influences of effective parameters such as pH, concentration of pyromellitic acid, accumulation potential and accumulation time on the sensitivity were studied. The peak current was proportional to the concentration of U(IV) up to 40 ng mL?1 with a limit of detection of 0.136 ng mL?1 with an accumulation time of 120 s. The range of linearity enhanced to 71.4 ng mL?1and the detection limit improved to 0.058 ng mL?1with accumulation times of 60 s and 300 s respectively. The relative standard deviation for 10 replicate determination of 4.76 ng mL?1 U(IV) was equal to 2.7%. The possible interference by major cations and anions are investigated. The method was applied to the determination of uranium in some analytical grade salts, seawater and in synthetic samples corresponding to some uranium alloys with satisfactory results.  相似文献   

3.
A new method is described for the determination of lead based on the cathodic adsorptive stripping of the lead–nuclear fast red (NFR) at a carbon paste electrode (CPE). The differential pulse voltammograms of the adsorbed complex of lead–NFR are recorded from ?0.10 to ?0.60 V (versus Ag/AgCl electrode). Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder, 4.0×10?5 mol L?1 NFR; buffer solution (pH of 3.0), accumulation potential and time, ?0.20 V, 60 and 120 s (for high and low concentration of lead), respectively. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at ?0.34 V, corresponding to reduction of NFR in the complex at the electrode. The detection limit was found to be 0.2 ng mL?1 with a 120s accumulation time. The linear ranges are from 0.5 to 50 (tacc=120 s) and 50 to 200 ng mL?1 (tacc=60 s). Application of the procedure to the determination of lead in lake water, bottled mineral water, synthetic samples and sweet fruit‐flavored powder drinks samples gave good results.  相似文献   

4.
A new adsorptive anodic differential pulse stripping voltammetry method for the direct determination of noscapine at trace levels in human plasma of addicts is proposed. The procedure involves an adsorptive accumulation of noscapine on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed noscapine by voltammetry scan using differential pulse modulation. The optimum conditions for the analysis of noscapine are pH = 8.5 using Britton‐Robinson (B‐R) buffer, accumulation potential of ?100 mV (vs. Ag/AgCl), and accumulation time of 150 s. The peak current is proportional to the concentration of noscapine, and a linear calibration graph is obtained at 0.015–2.75 μg mL?1. A relative standard deviation of 1.28% (n = 5) was obtained, and the limit of detection was 7 ng mL?1. The capability of the method for the analysis of real samples was evaluated by determination of noscapine in spiked human plasma and addicts, human plasma with satisfactory results.  相似文献   

5.
A sensitive and fast method for the simultaneous determination of trace amounts of nickel and cadmium in real samples has been described using differential pulse adsorptive stripping voltammetry (DPASV) by adsorptive accumulation of the N,N′‐bis(salicylaldehydo)4‐carboxyphenylenediamine (BSCPDA)–complex on the hanging mercury drop electrode (HMDE). As supporting electrolyte 0.02 mol L?1 ammonia buffers containing ligand has been used. Optimal analytical conditions were found to be: BSCPDA concentration of 42 μM, pH 9.6 and adsorption potential at ?50 mV versus Ag/AgCl. With an accumulation time of 20 s, the peaks current are proportional to the concentration of nickel and cadmium over the 1–180, and 0.5–200 ng mL?1 with detection limits of 0.06 and 0.03 ng mL?1 respectively. The sensitivity of method for determination of nickel and cadmium were obtained 0.54 and 0.98 nA mL ng?1, respectively. The procedure was applied to simultaneous determination of nickel and cadmium in some real and synthetic artificial samples with satisfactory results.  相似文献   

6.
A novel, sensitive and selective adsorptive stripping procedure for determination of aluminum is presented. The method is based on the adsorptive accumulation of dithiooxamide (Rubeanic acid) complex of aluminum onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the determination of aluminum were studied. The optimum analytical conditions were found to be Rubeanic acid (RA) concentration of 8.0×10?5 M, ammonia buffer (NH3? NH4Cl) pH of 6.5, and accumulation potential at ?50 mV vs. Ag/AgCl with an accumulation time of 60 s. The peak currents are proportional to the concentration of aluminum over the 0.3–70 ng mL?1 ranges with detection limit of 0.012 ng mL?1. The procedure was applied to the determination of aluminum in the Lab. Water, HCl of Merck and potato samples with satisfactory results.  相似文献   

7.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

8.
An adsorptive differential pulse stripping method for the simultaneous determination of lead and tin is proposed. The procedure involves an adsorptive accumulation of lead and tin on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed lead and tin by voltammetric scan using differential pulse modulation. The optimum experimental conditions are: 0.2 mol L?1 HNO3, accumulation potential of ?900 mV versus Ag/AgCl, accumulation time of 200 s, scan rate of 20 mV s?1 and pulse height of 80 mV. Lead and tin peak currents were observed in the same potential region at about ?400 mV. The simultaneous determination of lead and tin by using voltammetry is a difficult problem in analytical chemistry, due to voltammogram interferences. The resolution of a mixture of lead and tin by the application of orthogonal signal correction‐partial least squares (OSC‐PLS) was performed. The linear dynamic ranges were 0.003‐0.35 and 0.008‐0.50 μg mL?1 and detection limits were land 3 ng mL?1 for lead and tin, respectively. The RMSEP for lead and tin with OSC and without OSC were 2.8737, 6.0557 and 8.0941, 9.5151, respectively. The capability of the method for the analysis of real samples was evaluated by the determination of lead and tin in water samples with satisfactory results.  相似文献   

9.
A selective, sensitive novel electrochemical sensor for detection of methyl parathion on the preparation of a carbon dots (C-dots)/ZrO2 nanocomposite was developed. The C-dots/ZrO2 nanocomposite was fabricated using electrochemical deposition onto a glassy carbon electrode and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. The optimum parameters such as effect of pH, accumulation time, accumulation potential, scan rate, effect of amount of C-dots and effect of amount of ZrO2 were investigated. The C-dots/ZrO2 modified glassy carbon electrode allowed rapid, selective determination of methyl parathion in rice samples by adsorptive stripping voltammetry. The stripping response was highly linear over the methyl parathion concentrations ranging from 0.2 ng mL?1 to 48 ng mL?1, with a detection limit of 0.056 ng mL?1. This novel electrochemical nanocomposite-based electrochemical sensor was successfully applied for the detection of methyl parathion in rice samples.  相似文献   

10.
A study on the simultaneous determination of Ni(II) and Co(II) dimethylglyoximates (Ni‐DMG and Co‐DMG) through adsorptive cathodic stripping voltammetry at an in situ bismuth‐modified gold electrode (Bi‐AuE) is reported. The key operational parameters, such as Bi(III) concentration, accumulation potential and accumulation time were optimized and the morphology of the Bi‐microcrystals deposited on the Au‐electrode was studied. The Bi‐AuE allowed convenient analysis of trace concentrations of solely Ni(II) or of Ni(II) and Co(II) together, with cathodic stripping voltammograms characterized by well‐separated stripping peaks. The calculated limit of detection (LOD) was 40 ng L?1 for Ni(II) alone, whereas the LOD was 98 ng L?1 for Ni(II) and 58 ng L?1 for Co(II), when both metal ions were measured together. The optimized method was finally applied to the analysis of certified spring water (NIST1640a) and of natural water sampled in the Lagoon of Venice. The results obtained with the Bi‐AuE were in satisfactory agreement with the certified values and with those provided by complementary techniques, i.e., ICP‐OES and ICP‐MS.  相似文献   

11.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of iron, copper and cadmium is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of iron, copper and cadmium were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 2.0 μM, pH of 9.5, and accumulation potential at ?0.4 V vs. Ag/AgCl with an accumulation time of 60 s. The peak currents are proportional to the concentration of iron, copper and cadmium over the 1–80, 0.5–100 and 1–100 ng mL?1 ranges with detection limits of 0.5, 0.4 and 0.9 ng mL?1, respectively. The R.S.D. at a concentration level of 20 ng mL?1 of iron, copper and cadmium were 2.5%, 0.9% and 1.5% (n=6), respectively. The procedure was applied to the simultaneous determination of iron, copper and cadmium in the tap water and some synthetic samples with satisfactory results.  相似文献   

12.
We describe a silver(I)-selective carbon paste electrode modified with multi-walled carbon nanotubes and a silver-chelating Schiff base, and its electrochemical response to Ag(I). Effects of reduction potential and time, accumulation time, pH of the solution and the stripping medium were studied by differential pulse anodic stripping voltammetry and optimized. The findings resulted in a method for the determination of silver over a linear response range (from 0.5 to 235 ng?mL?1) and with a detection limit as low as 0.08 ng?mL?1. The sensor displays good repeatability (with the RSD of ±?2.75 % for 7 replicates) and was applied to the determination of Ag(I) in water samples and X-ray photographic films.
Figure
Open circuit accumulation of Ag(I) onto a surface of EHPO-MCPE and determination by Differential pulse anodic stripping voltammetry  相似文献   

13.
A sensitive, simple and reproducible square-wave cathodic adsorptive stripping voltammetric method is developed for the determination of 2-mercaptobenzimidazole (MBIM) in different water samples using a static mercury drop electrode (SMDE) as a working electrode. The solution conditions and instrumental parameters were optimized for the determination of MBIM by square-wave cathodic adsorptive stripping voltammetry. This method is based on a sensitive adsorptive reduction peak of the MBIM at ?0.532 V vs. Ag/AgCl reference electrode in a Britton-Robinson buffer at pH 10.0. The linear concentration range was 20–600 ng ml?1 when using 0.0 V as the accumulation potential. The detection limit of the method was calculated to be 8.41 ng ml?1. The precision was excellent with relative standard deviations (n = 20) of 2.30%, 1.71%, 2.25% and 1.33% at MBIM concentrations of 40, 90, 200 and 500 ng ml?1, respectively. The proposed voltammetric method is used for the determination of MBIM in different spiked water samples.  相似文献   

14.
A very sensitive electrochemical stripping procedure for azinphos-methyl (Guthion) is reported. Accumulation is achieved by adsorption of the compound on a hanging mercury drop electrode. The adsorptive stripping response was evaluated with respect to accumulation time and potential, concentration dependence, electrolyte and other variables. The determination limit is 0.2 ng ml?1 after 300 s accumulation and 0.4 ng ml?1 after 180 s accumulation. The procedure was applied to spiked river water.  相似文献   

15.
The in situ plated lead film electrode was proposed for the first time for adsorptive stripping voltammetric determination of gallium in water samples. The method was based on simultaneous lead film formation and Ga(III)‐cupferron complex preconcentration at ?0.7 V and its cathodic stripping during the potential scan. The composition of the supporting electrolyte, cupferron concentration, conditions of lead film formation, potential and time of accumulation were studied in detail. Under optimum conditions the limit of detection was 3.8×10?9 mol L?1. The proposed procedure was validated in the course of Ga(III) determination in waste water certified reference materials.  相似文献   

16.
《Analytical letters》2012,45(9):1750-1762
Abstract

The interaction between clozapine (CLZ) as an orally administrated antipsychotic drug with double stranded calf thymus DNA (dsDNA) was investigated at electrode surface using differential pulse voltammetry (DPV). Activated carbon paste electrode (CPE) was modified with dsDNA and used for monitoring the changes of the characteristics peak of CLZ in 0.05 M acetate buffer (pH 4.3). The adsorptive stripping voltammetry on dsDNA‐modified carbon paste electrode (dsDNA‐CPE) was used for determination of very low concentration of CLZ. Under optimal conditions, the oxidation peak current is proportional to CLZ concentration in the range of 7×10?9?1.2×10?6 mol l?1 with a detection limit of 1.5×10?9 mol l?1 for 180 s accumulation time by DPV. The proposed dsDNA‐CPE was successfully used for determination of CLZ in human serum samples with recovery of 97.0±2.5%.  相似文献   

17.
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20?ng?mL-1 and 2?ng?mL-1 of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH?4.0 ± 0.05.
Figure
Imidazole functionalized polyaniline modified glassy carbon and carbon paste electrodes were used for lead ion detection by using CV and DPASV techniques. The lower detection limit observed with GCE and CPE are 20?ng mL-1 and 2?ng mL-1.  相似文献   

18.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

19.
A lead film plated in situ at a carbon paste support was tested as a novel, potential electrode for adsorptive stripping voltammetric determination of cobalt traces in an ammonia buffer solution. To show the practical applicability of the new electrode, a catalytic adsorptive Co system in a supporting electrolyte containing 0.1 M ammonia buffer, 5×10?4 M nioxime and 0.25 M nitrite was selected and investigated as a model solution. Pb and Co ions were simultaneously accumulated in situ on the electrode surface: Pb ions electrochemically at ?1.3 V) and then at ?0.75 V, at which potential the Co(II)‐nioximate complex was also pre‐concentrated via adsorption. Instrumental parameters, such as the time of nucleation and formation of Pb film deposits, the time of accumulation of the Co‐nioxime complex at the PbF/CPE, and the procedures of electrode regeneration, were optimized to obtain good reproducibility and sensitivity of the Co response. The optimized procedure yields favorable and highly stable stripping responses with good precision (RSD=3% for a 5×10?8 M Co) and good linearity (up to 5×10?7 M, coefficient of determination, R=0.996). The detection limit was 4×10?10 M Co (0.023 μg L?1) for an accumulation time of 120 s. The method enables the determination of Co in the presence of high excesses of Ni or Zn. The voltammetric data were correlated with the structural characterization by scanning electron microscopy (SEM) and X‐ray fluorescence spectroscopy (XRF).  相似文献   

20.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号