共查询到20条相似文献,搜索用时 109 毫秒
1.
A procedure for trace thallium determination by anodic stripping voltammetry at a bismuth film electrode is presented. Measurements were performed in a flow system. The calibration graph was linear from 2×10?9 to 3×10?8 mol L?1 for an accumulation time of 300 s. A detection limit for Tl+ following deposition time of 300 s was 6×10?10 mol L?1. The relative standard deviation at Tl+ concentration 2×10?8 mol L?1 was 3.9%. For determination of thallium in complex matrices the procedure for elimination of interferences from foreign ions exploiting anion exchange resin was proposed. The procedure proposed was validated by analysis of rain water certified reference material. 相似文献
2.
Determination of Ultratrace Thallium(I) by Anodic Stripping Voltammetry at Bismuth Film Electrodes Following Double Deposition and Stripping Steps 下载免费PDF全文
The double deposition and stripping steps were proposed to increase the sensitivity in anodic stripping voltammetry of thallium(I). Two in situ plated bismuth film electrodes with drastically different surface areas were exploited for the measurements. Thallium was at first deposited at the electrode with a large surface area. As the deposition step at the large electrode was finished, the electrode was moved at a short distance to the small one. The thallium stripped from the large electrode was then accumulated at the second electrode. Taking into account the small volume of space between the electrodes, the concentration of Tl(I) between the electrodes was drastically higher than that in the bulk solution. The deposition step at the second electrode was performed from solution with a higher concentration of Tl(I) therefore the detection limit was lowered. The calibration graph was linear from 5×10?11 to 5×10?9 mol L?1 following deposition time of 300 s at the first and the second electrode. 相似文献
3.
《Electroanalysis》2017,29(9):2090-2097
Lignosulfonate‐stabilized gold nanoparticles (AuNPs‐LS) were synthesized and subsequently used as a complexing agent for mercury ions. The obtained AuNPs‐LS/Hg2+ complex was characterized by means of various physicochemical techniques such as UV‐vis spectroscopy, transmission electron microscopy and cyclic voltammetry. Furthermore, the resulting complex was evaluated as an electrode modifier for the development of amperometric sensors. Upon sufficient negative potential, the bound mercury ions are reduced to form an amalgam with AuNPs‐LS. Thus, the performance of glassy carbon electrode (GCE) modified by AuNPs‐LS/Hg film was investigated as an electrochemical sensor in the determination of Tl+ ions in a 0.05 M EDTA at pH 4.5. The presence of the mercury containing film improves the analyte accumulation due to its ability to form a fused amalgam with thallium. The presented data indicate that the GCE/AuNPs‐LS/Hg modified electrode shows better performance toward Tl+ determination in comparison to bare GCE. The stripping anodic peak current of thallium was linear over its concentration range from 1.7⋅10−7 to 5.0⋅10−6 M. The detection limit (3σ) was estimated to be 1.4⋅10−7 M. The proposed method was successfully applied for the determination of thallium ions in real samples of soil derived from the area of the copper smelter near Głogów (Poland). 相似文献
4.
本文采用自制流通电解池,在盐酸溶液中富集Cd(Ⅱ),In(Ⅲ),经连续介质交换,在选定的乙二胺-氯化钠溶液中进行差示脉冲阳极溶出。得到的镉、铟溶出峰△Ep≥100mV。波形完好。从根本上解决了盐酸溶液中Cd(Ⅱ)、In(Ⅲ)的阳极溶出峰相重叠的问题。建立了一个灵敏、快速,同时测定镉、铟的分析方法。 相似文献
5.
《Electroanalysis》2003,15(17):1369-1376
Silver‐gold alloy electrodes have been studied for the purpose of the quantitative determination of heavy metals by subtractive anodic stripping voltammetry, (SASV). The results have been compared with those obtained with the silver and gold electrodes. The 50/50 a/o Ag/Au alloy electrode is the most suitable for quantifying thallium in the presence of lead and cadmium. The separation of its peak from those of lead and cadmium is 200 mV, which is about twice the separation obtained on the pure metal electrodes and is also better than on mercury. The silver electrode is suitable for the simultaneous determination of thallium, lead and cadmium. The peaks of lead and cadmium overlap on the 50/50 alloy. Pure silver or pure gold can be used for simultaneous quantification of these two metals. The use of gold for quantifying lead and cadmium is more limited because the peak potential of cadmium is shifted in the negative direction as its concentration increases and at [Cd2+]>200 nM, the two peaks merge. SASV enables correction for background currents and is of utmost importance for obtaining well‐defined peaks. The peaks of lead, cadmium and thallium appear over a relatively narrow potential range (ca. 200 mV) on all the electrodes presented in this work. For this reason, the quantifying of a peak is based on the derivative at the inflection point of only one of its branches (ascending or descending). All SASV measurements were carried out without removal of oxygen. 相似文献
6.
7.
8.
9.
Jang‐Hee Yoon G. Muthuraman JeeEun Yang Yoon‐Bo Shim Mi‐Sook Won 《Electroanalysis》2007,19(11):1160-1166
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5). 相似文献
10.
Vanessa Pezza Franzini Cecílio Sadao Fugivara Assis Vicente Benedetti Clóvis Augusto Ribeiro Eder Tadeu Gomes Cavalheiro José Anchieta Gomes Neto 《Electroanalysis》2007,19(17):1794-1798
A sensor based on graphite electrode modified with palladium‐platinum‐palladium film is proposed for phosphite determination by flow‐injection amperometry. The modified electrode was prepared by a sequential cathodic deposition of Pd, Pt and Pd on a graphite electrode from 0.5% m/v PdCl2+28% m/v NH4OH and 2% m/v H2PtCl6+10% v/v H2SO4 solutions. After suitable conditioning, the electrode showed catalytic activity for phosphite oxidation when 0.15 V was applied. The proposed system handles approximately 50 samples per hour (0.01–0.05 mol L?1 Na2HPO3; R2=0.9997), consuming ca. 70 μL of sample per determination. The limit of detection and amperometric sensibility were 5×10?4 mol L?1 and 1.5 mA L mol?1, respectively. The proposed method was applied to analysis of fertilizer samples without pre‐treatment. Results are in agreement with those obtained by spectrophotometry and titrimetry at 95% confidence level and good recoveries (96–109%) of spiked samples were found. Relative standard deviation (n= 12) of a 0.01 mol L?1 Na2HPO3 sample was 2%. The useful lifetime of modified electrode was around 220 determinations. For routine purposes it means that this electrode can be continuously used for 5 hours. 相似文献
11.
Marco Giannetto Giovanni Mori Fabio Terzi Chiara Zanardi Renato Seeber 《Electroanalysis》2011,23(2):456-462
Electrode modifications consisting of poly(3,4‐ethylenedioxythiophene) (PEDOT), including gold nanoparticles according to simple though innovative procedure, are developed. The resulting nanocomposite shows interesting performances as electrode material for determination of mercury by anodic stripping technique, even down to concentration levels as low as 0.83 ng/mL. The analytical performance is evaluated by optimized experimental parameters such as the charge spent during the potentiostatic electrodeposition of PEDOT, the preconcentration time, and the waveform parameters for the differential pulse voltammetry (DPV) redissolution scan. No evidence of significant oxidative degradation of the polymer over repeated analysis cycles is evidenced. 相似文献
12.
Christos Kokkinos Ioannis Raptis Anastasios Economou Thanassis Speliotis 《Electroanalysis》2010,22(20):2359-2365
This work reports the trace determination of Tl(I) by square‐wave anodic stripping voltammetry (SWASV) on novel microsensors equipped with a bismuth‐film electrode (BiFE). The sensors were fabricated by a multistep microfabrication approach combining sputtering (to deposit the electrode materialm, bismuth‐ and the insulator SiO2, on the surface of a silicon wafer) and photolithography (to define the geometry of the sensor). The effect of the preconcentration time, the preconcentration potential and the SW stripping parameters were investigated. Using the selected conditions, the 3σ limit of detection was 0.6 µg L?1 of Tl(I) at a preconcentration time of 240 s and the percent relative standard deviation was 4.3 % at the 10 µg L?1 level (n=8). In order to eliminate the interference caused by Pb(II) and Cd(II), EDTA was added in the sample solution The method was successfully applied to the determination of Tl(I) in a certified lake water sample. These new sensors exhibit excellent mechanical stability and offer wide scope as mercury‐free disposable sensors for trace metal analysis. 相似文献
13.
This work reports the highly‐sensitive amperometric determination of free glycerol in biodiesel at a gold electrode adapted in a flow‐injection analysis (FIA) cell. The amperometric method involved the continuous application of three sequential pulses to the working electrode (+250 mV, +700 mV, and ?200 mV, for 100 ms each). This sequence of potential pulses eliminated electrode passivation and dramatically increased the analytical signal. The proposed FIA‐amperometric method presented low relative standard deviation between injections (1.5 %, n=15), high analytical frequency (85 h?1), satisfactory recovery values (93–118 %) for spiked samples, wide linear range (from 1 to 300 µmol L?1), and low detection limit (0.5 µmol L?1). 相似文献
14.
《Electroanalysis》2005,17(9):815-818
Lead and cadmium have been determined by the subtractive anodic stripping voltammetry using the square‐wave mode at a silver electrode without removal of oxygen. The samples containing large amount of thallium were collected from a highly contaminated region. The presence of thallium strongly affects the peak shape of Cd. The plant material digestion was performed with HNO3/HClO4 mixture using pressurised microwave decomposition. The proposed method used for the lead determination was validated by the inter‐method comparison (ICP‐MS). The cadmium determination was validated using certified reference material. The results obtained, supported by statistical tests, demonstrated the usefulness of the method for the lead determination in samples containing large amounts of Cd and Tl. It is important to note that Cd can only be quantified when the thallium concentration is much lower than that of cadmium. 相似文献
15.
本文叙述一种流动注入吸附溶出一催化极谱测定痕量铂的新技术,它集中了溶出法、催化波和流动注入的优点,达到非常高的灵敏度和分析速度。实验给出了最佳载液组成、流速、注入体积、吸附富集电位和吸附时间等因素。本方法成功地进行了多种铂络合物、矿样和生物样品分析。 相似文献
16.
《Analytical letters》2012,45(15):1209-1220
Abstract Bismuth in 5 ml of blood or 10 ml of urine is determined by dilution to 100 ml with 0.25 M HCl, separation by anion exchange chromatography (Amberlite IRA-400 (Cl)), and measurement by differential pulse anodic stripping voltammetry in the presence of 0.1 M KCl. 相似文献
17.
《Electroanalysis》2005,17(8):685-693
Carbon paste electrodes were modified by mixing appropriate amounts of the monomers o‐phenylendiamine, p‐phenylendiamine and m‐phenylendiamine (o‐PD, p‐PD and m‐PD) into a graphite powder‐paraffin oil matrix. The electropolymerization of the incorporated phenylendiamine was then carried out in a carbon paste electrode in acidic medium by cyclic voltammetry between ?0.30 V and +0.90 or under constant potential. The modified carbon paste electrodes (MCPEs) obtained by this electropolymerization method were found to be useful for trace determination of Pb2+ in aqueous solutions. Lead(II) was first preconcentrated on the modified electrodes by complexation with the modifier, and the electrode was then transferred to an electrochemical cell. The best results in terms of sensitivity and detection limit were obtained with poly p‐phenylenediamine (poly (p‐PD)). For a 10‐min preconcentration time, the calibration plot was linear from 5×10?8 mol L?1 to 10?5 mol L?1, with r2=0.999 and relative standard deviation equal to 5%. However, the lowest lead concentration that could be detected was 10?9 mol L?1. Interference from metal ions like Cd(II), Hg(II), Zn(II), Fe(II) and Cu(II) was also studied. 相似文献
18.
Christos Kyrisoglou Anastasios Economou Constantinos E. Efstathiou 《Electroanalysis》2012,24(9):1825-1832
This work reports the utility of an iridium microwire plated in situ with a bismuth film for the simultaneous determination of Pb(II) and Cd(II) by square‐wave anodic stripping voltammetry (SWASV). The experimental variables (concentration of the bismuth plating solution, preconcentration potential, accumulation time) were investigated. The limit of detection was 1 µg L?1 for Pb(II) and 1.5 µg L?1 for Cd(II) (at 300 s of preconcentration) and the % relative standard deviations were lower than 4.9 % and 5.5 %, respectively, at the 20 µg L?1 level (n=8). In addition, a study was made of coating the iridium‐based bismuth‐film microsensor with a film of Nafion for operation in the presence of surfactants. Finally, the electrode was applied to the determination of Pb(II) and Cd(II) in wastewater and tapwater samples. 相似文献
19.
《Electroanalysis》2017,29(4):1022-1030
The proposed chemically modified electrode was graphene oxide that was synthesized via Hummer's method followed by reduction of antimony film by in‐situ electrodeposition. The experimental process could be concluded in three main steps: preparation of antimony film, reduction of analyte ions on the electrode surface and stripping step under the conditions of square wave anodic stripping voltammetry (SWASV). A simple and rapid approach was developed for the determination of heavy metals simultaneously based on a sequential injection (SI), an automated flow‐based system, coupled with voltammetric method using antimony‐graphene oxide modified screen‐printed carbon electrode (SbF‐GO‐SPCE). The effects of main parameters involved with graphene oxide, antimony and measurement parameters were also investigated. Using SI‐SWASV under the optimal conditions, the proposed electrode platform has exhibited linear range from 0.1 to 1.5 M. Calculated limits of detection were 0.054, 0.026, 0.060, and 0.066 μM for Cd(II), Pb(II), Cu(II) and Hg(II), respectively. In addition, the optimized method has been successfully applied to determine heavy metals in real water samples with acceptable accuracy of 94.29 – 113.42 % recovery. 相似文献
20.
《Electroanalysis》2005,17(2):105-112
The forensic analysis of lead in gunshot residues (GSR) sampled on the hands of potential shooters is rendered faster, simpler and less expensive by a new batch injection analysis (BIA) method, based on differential pulse anodic stripping voltammetry (DPASV). A simple “J” shaped adaptor was designed to direct the flux of the analyte injected with a micropipettor onto the hanging mercury drop electrode of any commercial electrode stand. Sampling methods for GSR were compared and lifting with adhesive tape was elected for field use. The tapes are glued on polyethylene screens and stored in capped vials. Sampling with multiple strips provides coarse mapping of the distribution of lead on the shooter's hands. After a dissolution/extraction step with chloroform/aqueous 0.10 mol L?1 HCl, 100 μL of the aqueous phase are injected during 25 s for accumulation of lead on the HMDE at ?0.60 V (vs. Ag/AgCl). A detection limit of 20 ng/mL of Pb(II), outreaching for GSR analysis, is reached without oxygen removal, at a frequency of 20 injections per hour. Results for sequences of shootings with a revolver and a pistol are presented. 相似文献