首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of methyl, hydroxyl, and chloride substituents in position 3 of the 3′,4′,7‐trihydroxyflavylium core structure was studied. The stability, relative energy of each of chemical species (thermodynamics), and their rates of interconversion (kinetics) are very dependent on these substituents. By comparing the mole fraction distribution at equilibrium of the three multistate systems with the parent 3′,4′,7‐trihydroxyflavylium, introduction of a methyl substituent in position 3 increases the mole fraction of hemiketal at the expense of the trans‐chalcone and increases the hydration rate very significantly; a hydroxyl substituent in position 3 gives rise to a degradation process, as observed in anthocyanidins. In the case of 3‐chloro‐3′,4′,7‐trihydroxyflavylium, a dramatic increase of the flavylium cation acidity was observed and a photochromic system can be operated upon irradiation of the respective trans‐chalcone in 1 m HCl. According to the photochromic response of 3,3′,4′,7‐tetrahydroxyflavylium and 3′,4′,7‐trihydroxyflavylium, some requirements for a good photochromic performance are discussed.  相似文献   

3.
A series of naphthopyrans with hydrazone unit ( 8a – 8m ), were synthesized and characterized by 1H NMR, 13C NMR, IR and HRMS. The photochromic properties were investigated under continuous irradiation, in particular regard to the fatigue resistance and the lifetime of the colored open form in solution and polymers. The results showed that these compounds had both good photochromic properties and high fatigue resistance. Detailed studies showed that representative compound 8d (3,3‐di‐4‐methoxybenzoic acid methylenehydrazino‐[3H]‐naphtho [2,1‐b]pyran) had good photochromic properties in THF solution, in solid state, and in polymers, and exhibited a significant bathochromic shift in the spectra of the open forms compared to known naphthopyrans 9 (3,3‐diphenyl‐[3H]‐naphtho[2,1‐b]pyran). On the other hand, the higher melting points of target compounds are promising for the polymer film preparation through hot‐melt method.  相似文献   

4.
9‐Alkyl xanthenones with different aliphatic pendant groups have been easily prepared by means of nucleophilic addition of the corresponding Grignard derivative to a tert‐butyldimethylsilyl ether (TBDMS)‐protected 3,6‐dihydroxy‐xanthenone. The photophysical behavior of the new dyes has been explored by using absorption, steady‐state‐, and time‐resolved fluorescence measurements. We determined the equilibrium constants, visible spectral characteristics, fluorescence quantum yield, and decay times. Remarkably, they retain similar fluorescent properties of fluorescein including the characteristic phosphate‐mediated excited‐state proton‐transfer (ESPT) reaction. 6‐Hydroxy‐9‐isopropyl‐3H‐xanthen‐3‐one ( 5 ) was investigated in living cells; it presented a good permeability and efficient accumulation inside the cytosol. For the first time, we reported that the requirement of an aryl group at C‐9 is no longer needed and new fluorescent sensors can be therefore easily developed.  相似文献   

5.
Various bicolored fluorescent micropatterns are fabricated on a single polymer film by concurrent photobleaching and a photobase generation process. A polymer, bearing anthracene and oxime–urethane groups, is dyed with rhodamine B isothiocyanate after irradiation with 310‐nm UV light. The photochemical reaction of the polymer is monitored by UV, IR absorption, and fluorescence emission spectroscopy. Differently colored fluorescent micropatterns are obtained by selectively exciting each dye moiety. Various bicolored fluorescent micropatterns are observed through varying the excitation wavelength and observation wavelength ranges using a confocal microscope. This bicolored fluorescence patterning method will be useful to apply in photonic/electronic devices.

  相似文献   


6.
7.
Photochromic bisnaphthopyrans linked with oligothiophenes were synthesized and their photochromic behavior studied. Sequential and temperature-dependent photochromism was observed in the oligothiophene linked bisnaphthopyrans. The kinetics of photo and thermal processes in bisnaphthopyrans in comparison with naphthopyrans were studied. Substituent and linking effects on the photochromic properties are discussed. We demonstrate that the cross-talk between the two photochromophores is dependent on the length of the oligothiophene linker. The presence of the bithiophene linker led to high colorability and high quantum yield of coloration.  相似文献   

8.
A spectral and kinetic study was carried out of some substituted 1,2-dithienylperfluorocyclopentenes and 1,2-bis(benzo[b]thienyl)perfluorocyclopentenes suitable for use as photosensitive components of photochromic recording media for optical memory. The introduction of nitro groups into the benzothienyl moieties dramatically decreases photodegradation and increases the fatigue resistance of these photochromes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2697–2700, December, 2005.  相似文献   

9.
10.
Despite recent extensive studies on mechanochromic luminescence (MCL), rational control over the magnitude of the emission-wavelength shift in response to mechanical stimuli remains challenging. In the present study, a two-component donor-acceptor approach has been applied to create a variety of organic MCL composites that exhibit remarkable emission-wavelength switching. Dibenzofuran-based bis(1-pyrenylmethyl)diamine and typical organic fluorophores have been employed as donor and acceptor dyes, respectively. Outstanding wide-range MCL with an emission-wavelength shift of over 300 nm has been achieved by mixing the diamine with 3,4,9,10-perylenetetracarboxylic diimide. Unprecedented two-step MCL in response to mechanical stimuli of different intensity has also been realized for a two-component mixture with 9,10-anthraquinone. Fluorescence microscopy observations at the single-particle level revealed that the segregation and mixing of the two-component dyes contribute to the stimuli-responsive emission-color switching of the MCL composites.  相似文献   

11.
12.
The photochromic diarylethene, 1,2-bis[2-methyl-5-(3-trifluoromethylphenyl)-3-thienyl]perfluorocyclopentene (BMTTP), was synthesized and its photochromic kinetics, fluorescence and X-ray structure were investigated. This compound underwent a photochromic reaction both in solution and the single crystalline phase. Its cyclization/cycloreversion process was determined to be zeroth/first order reaction, respectively, and this is the first report on the cyclization/cycloreversion reaction order. In addition, its fluorescence property was also discussed.  相似文献   

13.
A variety of differently substituted 6‐ and 7‐arylchromenes such as that depicted undergo photoinduced C? O bond cleavage to yield colored o‐quinonoid intermediates. A combined analysis of μs–ms (laser flash) and real‐time kinetic data show that the o‐quinonoid intermediates decay faster when the C2‐aryl and C6‐/C7‐aryl rings contain electron‐donating and electron‐accepting groups, respectively. Similarly, the decay occurs slowly for the reversed scenario, while intermediate decay rates are observed when both substituents are electron donating.

  相似文献   


14.
A crystalline coordination polymer (CP) photocatalyst (Cu‐RSH) which combines redox‐active copper centers with photoactive rhodamine‐derived ligands remains stable in acid and basic solutions from pH 2 to 14, and efficiently catalyzes dihydrogen evolution at a maximum rate of 7.88 mmol g?1 h?1 in the absence of a mediator and a co‐catalyst. Cyclic voltammetry, control experiments, and DFT calculations established that copper nodes with open coordination sites and favorable redox potentials, aided by spatially ordered stacking of rhodamine‐based linkers, account for the high catalytic performance of Cu‐RSH. Emission quenching, time‐resolved fluorescence decay, and transient photocurrent experiments disclosed the charge separation and transfer process in the catalytic system. The present study demonstrates the potential of crystalline copper CPs for the practical utilization of light.  相似文献   

15.
Within the past decade photochromic materials, specifically dithienylethenes (DTEs), have received increased interest because of their ability to function as potential photoswitchable molecular devices and optical memory storage systems. Current research in this area has focused on incorporating organic architectures to functionalize the DTE framework and alter the resulting photophysical properties; however, their syntheses are often not trivial. In this context, we have designed a simple and versatile diimine ( 2 ) containing adjacent 2,5‐dimethyl(thienyl) rings in the backbone. This redox active diimine ( 2 ) acts as a precursor to a novel photochromic ligand and has been used to coordinate to both boron and phosphorus elements, along with the synthesis of a phosphorane‐side‐chain functionalized polymer without further functionalization to the parent DTE framework. A study of the resulting photochromic properties of these compounds revealed that 1) the UV‐visible absorption spectra of the closed‐ring isomer were dependent of the element present in the N,N′‐chelating pocket and 2) incorporating the dithienylethene into a side‐functionalized phosphorane polymer greatly increased the closed‐/open‐ring reversibility and decreased the formation of by‐products.  相似文献   

16.
Surface modification with organic dye molecules is a useful strategy to manipulate the optical properties of lanthanide‐doped nanoparticles (LnNPs). It enables energy transfer between dyes and LnNPs, which provides unprecedented possibilities to gain new optical phenomena from the dye–LnNPs composite systems. This has led to a wide range of emerging applications, such as biosensing, drug delivery, gene targeting, information storage, and photon energy conversion. Herein, the mechanism of energy transfer and the structural‐dependent energy‐transfer properties in dye‐coupled LnNPs are reviewed. The design strategies for achieving effective dye–LnNP functionalization are presented. Recent advances in these composite nanomaterials in biomedicine and energy conversion applications are highlighted.  相似文献   

17.
18.
Bodipy laser dyes are highly efficient but degrade rapidly in solution by reacting with in situ generated singlet oxygen (1O2). To increase the lasing lifetimes of these dyes, we have designed and synthesised two different congeners of the widely studied Pyrromethene 567 (PM567) by substitution at the boron centre and/or at both the boron centre and the meso position. The two new dyes showed high lasing efficiencies with increased photostability. The results of theoretical and pulse radiolysis studies revealed that the substitution at the boron centre reduced the 1O2 generation capacity of these dyes as well as their rate of reaction with 1O2, thereby enhancing their lifetimes even under lasing conditions.  相似文献   

19.
Ultrafast discharge of a single‐electron capacitor: A variety of intramolecular electron‐transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single‐electron events. (et=electron transfer, cr=charge recombination, csr=charge‐shift reaction, PER=perylene, POM=polyoxometalate).

  相似文献   


20.
A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye‐sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye‐sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号