首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Chemphyschem》2005,6(11):2404-2409
Herein, we continue our investigation of the single‐molecule spectroscopy of the conjugated polymer poly[2‐methoxy,5‐(2‐ethylhexyloxy)‐p‐phenylene‐vinylene] (MEH‐PPV) at cryogenic temperatures. First, the low temperature microsecond dynamics of single MEH‐PPV conjugated polymer molecules are compared to the dynamics at room temperature revealing no detectible temperature dependence. The lack of temperature dependence is consistent with the previous assignment of the dynamics to a mechanism that involves intersystem crossing and triplet–triplet annihilation. Second, the fluorescence spectra of single MEH‐PPV molecules at low temperature are studied as a function of excitation wavelength (i.e. 488, 543, and 568 nm). These results exhibit nearly identical fluorescence spectra for different excitation wavelengths. This strongly suggests that electronic energy transfer occurs efficiently to a small number of low‐energy sites in the multichromophoric MEH‐PPV chains.  相似文献   

2.
Blinking of the photoluminescence (PL) emitted from individual conjugated polymer chains is one of the central observations made by single‐molecule spectroscopy (SMS). Important information, for example regarding excitation energy transfer, can be extracted by evaluating dynamic quenching. However, the nature of trap states, which are responsible for PL quenching, often remains obscured. We present a detailed investigation of the photon statistics of single poly(3‐hexylthiophene) (P3HT) chains obtained by SMS. The photon statistics provide a measure of the number and brightness of independently emitting areas on a single chain. These observables can be followed during blinking. A decrease in PL intensity is shown to be correlated with either 1) a decrease in the average brightness of the emitting sites; or 2) a decrease in the number of emitting regions. We attribute these phenomena to the formation of 1) shallow charge traps, which can weakly affect all emitting areas of a single chain at once; and 2) deep traps, which have a strong effect on small regions within the single chains.  相似文献   

3.
In this study, luminescence electrospun (ES) nanofibers based on ternary blends of poly(9,9‐dioctylfluoreny‐2,7‐diyl) (PFO)/poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV)/poly(methyl methacrylate) (PMMA) were prepared from chloroform solutions using a single capillary spinneret. Effects of PFO/MEH‐PPV ratio on the morphology and photophysical properties were studied while the PMMA weight percentage was fixed at 90 wt %. The morphologies of the prepared ES fibers were characterized by FE‐SEM and fluorescence microscopy. The obtained fibers had diameters around a few hundred nm and pore sizes in the range of 30–35 nm. The emission colors of the PFO/MEH‐PPV/PMMA blend ES fibers changed from blue, white, yellowish‐green, greenish‐yellow, orange, to yellow, as the MEH‐PPV composition increased. In contrast, the emission colors of the corresponding spin‐coated films were blue, orange, pink‐red, red, and deep‐red. Based on the values of solubility parameters, the PFO and MEH‐PPV are miscible to each other and trapped in the PMMA matrix. Hence, energy transfer between these two polymers is possible. The smaller aggregated domains in the ES fiber compared to those of spin‐coated films possibly reduce the efficiency of energy transfer, leading to different emission colors. Also, the prepared ES fibers had higher photoluminescence efficiencies than those of the spin‐coated films. Pure white light‐emitting fibers prepared from the PFO/MEH‐PPV/PMMA blend ratio of 9.5/0.5/90 had the Commission Internationale de L'Eclairage (CIE) coordinate of (0.33, 0.31). Our results showed that different color light‐emitting ES fibers were produced through optimizing the composition of semiconducting polymer in the transparent polymer matrix. This type of ES fibers could have potential applications as new light sources or sensory materials for smart textiles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 463–470, 2009  相似文献   

4.
5.
Luminophoric dialdehyde 1,4‐bis[4‐formylphenylethynyl‐(2,5‐dioctadecyloxyphenyl)‐buta‐1,3‐diyne] ( 4 ) enables the synthesis of diyne‐containing hybrid polyphenyleneethynylene/poly(p‐phenylenevinylene) polymer poly[1,4‐phenylene‐ethynylene‐1,4‐(2,5‐dioctadecyloxy)phenylene‐butadi‐1,3‐ynylene‐1,4‐(2,5‐dioctadecyloxy)phenylene‐ethynylene‐1,4‐phenylene‐ethene‐1,2‐diyl‐1,4‐(2,5‐dioctadecyloxy)phenylene‐ethene‐1,2‐diyl] ( 7 ) with a well‐defined general structure (? Ph? C?C? Ar? C?C? C?C? Ar? C?C? Ph? CH?CH? Ar? CH?CH? )n, which was confirmed by NMR and infrared spectroscopy. The highly luminescent material is thermostable, soluble in usual organic solvents through the grafting of octadecyloxy side groups, and can be processed into transparent films. With the aim to investigate the effect of ? C?C? C?C? in the photophysical behavior of 7 , a comparison of the photophysics of monomers 3 [1,4‐bis(4‐formylphenylethynyl)‐2,5‐dioctadecyloxybenzene] and 4 and subsequently of their respective polymers 6 and 7 has been carried out. Similar photophysical behaviors for 6 (poly[1,4‐phenylenethynylene‐1,4‐(2,5‐dioctadecyloxyphenylene)ethene‐1,2‐diyl]) and 7 were observed in dilute CHCl3 solution as a result of an identical chromophore system responsible for the absorption (λa = 448 nm) and emission (λf = 490 nm) in both compounds. The increased planarization and enhanced rigidity of the conjugated backbone in the solid state at room temperature as well as in frozen dilute tetrahydrofuran solution at 77 K cause the bathochromic shift of the absorption and emission spectra. The large octadecyloxy side chains obviously limit strong π‐π interchain interactions in the solid films, which explains the high fluorescence quantum yields of 35 and 52% obtained for 6 and 7 , respectively. The energetically arduous migration of the π electron through the diyne units not only requires a higher threshold voltage for the detection of photoconductivity in 7 but could possibly limit radiationless deactivation channels of the exciton, which explains the approximate 20% fluorescence quantum yields difference between 6 and 7 in the solid state. The electron‐withdrawing effect of the triple bonds confer both 6 and 7 with a good electron‐accepting property (Eox = 1.39 V vs Ag/AgCl) if used in light‐emitting diode devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2670–2679, 2002  相似文献   

6.
The efficiency optimization of bulk heterojunction solar cells requires the control of the local active materials arrangement in order to obtain the best compromise between efficient charge generation and charge collection. Here, we investigate the large scale (10–100 μm) inhomogeneity of the photoluminescence (PL) and the external quantum efficiency (EQE) in inverted all‐polymer solar cells (APSC) with regioregular poly(3‐hexylthiophene) (P3HT):poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) active blends. The morphology and the local active polymer mixing are changed by depositing the active layer from four different solvents and by thermal annealing. The simultaneous PL and EQE mapping allowed us to inspect the effects of local irregularities of active layer thickness, polymer mixing, polymer aggregation on the charge generation and collection efficiencies. In particular, we show that the increase of the solvent boiling point affects the EQE non‐uniformity due to thickness fluctuations, the density non‐uniformity of rrP3HT aggregate phase, and the blend components clustering. The thermal annealing leads to a general improvement of EQE and to an F8BT clustering in all the samples with locally decrease of the EQE. We estimate that the film uniformity optimization can lead to a total EQE improvement between 2.7 and 6.3 times. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 804–813  相似文献   

7.
The transport properties of conducting polymers are known to be greatly influenced by the chemical unsaturation surrounding the polymer backbone, besides favorable conformation of the side chains present. Polymeric composites with multi‐walled carbon nanotubes (MWNT) can provide a good conductive path at relatively low carbon contents, as these have high aspect ratio, specific surfaces and are cost effective. Hence their use in various applications such as organic LED, solar cells and supercapacitors are very much anticipated. In this respect poly(3‐octylthiophene)/MWNT composites have been prepared by an “insitu” polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites were characterized by Fourier Transfer Infrared spectroscopy (FT‐IR), Raman, work function and X‐ray diffraction (XRD) measurements. The results indicate only a weak ππ interaction between the moieties, in the absence of a strong covalent bonding. The ultraviolet–visible (UV–Vis) measurements also support this view. The photoluminescence (PL) quenching indicates the effectiveness of the interface in the formation of the donor–acceptor type composite. The conductivity of the composites is followed by a four probe technique to understand the conduction mechanism. The Hall voltage measurement is followed to monitor carrier concentrations and mobilities. The impressive conductivity and mobility values encourage the utility of the composites as photovoltaic material. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The quantum efficiencies of photoluminescence (PL) and electro‐luminescence (EL) of poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) were significantly increased by heat treatments under vacuum with further removing the undissolved portion. The UV–vis absorption was found to decrease with heating time, while PL intensity increased. The maximum PL quantum yield was 6.5 times that of the untreated MEH‐PPV, which was attributed to the reduction of chain aggregations and the interruption of conjugation length. The maximum EL quantum yield of their prepared ITO/PANI/MEH‐PPV/Ca/AL light emitting diodes (PLED) was 46 (at 3 V) times that of the untreated sample. A typical turn‐on voltage of 2.5 V for MEH‐PPV PLED was able to decrease to 1 V after heat treatments, which was believed to result from the decrease of cis linkages in the polymer chains as revealed by the 1H NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1705–1711, 2005  相似文献   

9.
New monomers containing 4‐cyanophenyl (–PhCN) groups attached to a thieno[3,2‐b]thiophene (TT) or dithieno[3,2‐b:2′,3′‐d]thiophene (DTT) structure were synthesized and characterized as 4‐(2,5‐dibromothieno[3,2‐b]thiophen‐3‐yl)benzonitrile (Br–TT–PhCN) or 4,4′‐(2,6‐dibromodithieno[3,2‐b:2′,3′‐d]thiophene‐3,5‐diyl)dibenzonitrile (Br–DTT–PhCN). The Suzuki coupling of 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol)ester and the Br–TT–PhCN or Br–DTT–PhCN monomer was utilized for the syntheses of novel copolymers poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐3‐(4′‐cyanophenyl)thieno[3,2‐b]thiophene‐2,5‐diyl} (PFTT–PhCN) and poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐3,5‐bis(4′‐cyanophenyl)dithieno[3,2‐b:2′,3′‐d]thiophene‐2,6‐diyl} (PFDTT–PhCN), respectively. The photophysical, electrochemical, and electroluminescent (EL) properties of these novel copolymers were studied. Their photoluminescence (PL) exhibited the same emission maximum for both copolymers in solution. Red‐shifted PL emissions were observed in the thin films. The PL emission maximum of PFTT–PhCN was more significantly redshifted than that of PFDTT–PhCN, indicating more pronounced excimer or aggregate formation in PFTT–PhCN. The ionization potential (HOMO level) and electron affinity (LUMO level) values were 5.54 and 2.81 eV, respectively, for PFTT–PhCN and were 5.57 and 2.92 eV, respectively, for PFDTT–PhCN. Polymer light‐emitting diodes (LEDs) with copolymer active layers were fabricated and studied. Anomalous behavior and memory effects were observed from the current–voltage characteristics of the LEDs for both copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2629–2638  相似文献   

10.
A series of novel soluble donor‐acceptor low‐bandgap‐conjugated polymers consisting of different oligothiophene (OTh) coupled to electron‐accepting moiety 2‐pyran‐4‐ylidenemalononitrile (PM)‐based unit were synthesized by Stille or Suzuki coupling polymerization. The combination of electron‐accepting PM building block with varied OThn (the number of thiophene unit increases from 3 to 5) results in enhanced π–π stacking in solid state and intramolecular charge transfer (ICT) transition, which lead to an extension of the absorption spectra of the copolymers. Cyclic voltammetry measurements and molecular orbital distribution calculations indicate that the highest occupied molecular orbitals (HOMO) energy levels could be fine‐tuned by changing the number of thiophene units of the copolymers, and the resulting copolymers possessed relatively low HOMO energy levels promising good air stability and high‐open circuit voltage (Voc) for photovoltaic application. Bulk heterojunction photovoltaic devices were fabricated by using the copolymers as donors and (6,6)‐phenyl C61‐butyric acid methyl ester as acceptor. It was found that the highest Voc reached 0.94 V, and the short circuit currents (Jsc) were improved from 1.78 to 2.54 mA/cm2, though the power conversion efficiencies of the devices were measured between 0.61 and 0.99% under simulated AM 1.5 solar irradiation of 100 mW/cm2, which indicated that this series copolymers can be promising candidates for the photovoltaic applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2765–2776, 2010  相似文献   

11.
Novel series of conjugated copolymers, incorporating cyclopentadithiophene (CPDT) and the biselenophene ( R‐CPDT‐Se2 ), were synthesized by Pd‐catalyzed Stille coupling polymerization. The optical, electrochemical, field‐effect carrier mobilities, and photovoltaic properties of the R‐CPDT‐Se2 were investigated and compared with cyclopentadithiophene (CPDT) and the bithiophene ( EHex‐CPDT‐T2 ). The highest hole mobility of thin film transistor devices fabricated with new p‐type polymer semiconductors, Oct‐CPDT‐Se2 , was 1.3 × 10?3 cm2/Vs with an on/off ratio of about 105. The maximum power conversion efficiency of polymer solar cell fabricated with the blend of EHex‐CPDT‐Se2 /C71‐PCBM reached 1.86% with an open circuit voltage (VOC) of 0.55 V, a short circuit current density (Jsc) of 7.27 mA/cm2, and a fill factor (FF) of 0.47 under AM 1.5G irradiation (100 mW/cm2). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

12.
A series of white polymer light emitting displays (PLEDs) based on a polymer blend of polyalkylfluorenes and poly(2‐methoxy‐5,2′‐ethyl‐hexyloxy‐1,4‐phenylene vinylene) (MEH‐PPV) was developed. MEH‐PPV or red light emitting alkyfluorene copolymer (PFR) was blended with blue light emitting alkyfluorene copolymer (PFB), and MEH‐PPV was blended with both green light emitting alkyfluorene copolymer (PFG) and PFB to generate white light emission PLEDs. Low turn on voltage (2.7 V), high brightness (12,149 nits), high efficiency (4.0 cd/A, 4.0 lm/W), and good color purity (Commission Internationale de L'Eclairage (CIEx,y) co‐ordinates (0.32, 0.34)) were obtained for the white PLEDs based on the PFB and MEH‐PPV polymer blend. Exciplex formation in the interface between PFR and PFB induced a new green emission peak for these two components based white PLEDs. As a result, strong white emission (4078 nits) was obtained by mixing the red, green, and blue (RGB) three primary colors. High color purity of blue (CIE, x = 0.14, y = 0.08), green (CIE, x = 0.32, y = 0.64) and red (CIE, x = 0.67, y = 0.33) emissions was achieved for white PLEDs combining with dielectric interference color‐filters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 330–341, 2007  相似文献   

13.
Low‐band‐gap π‐conjugated polymers composed of π‐excessive thiophene and π‐deficient benzothiadiazole and quinoxaline units were prepared in high yields by a polycondensation method using palladium cross‐coupling reactions of alkylthiophene diacetylenes, 4,7‐dibromo‐2,1,3‐benzothiadiazole, and 5,8‐dibromo‐2,3‐dipyridine‐2‐ylquinoxaline. The copolymers were characterized by NMR, IR, UV, gel permeation chromatography, and elemental analysis. High‐molecular‐weight (weight‐average molecular weight up to 82,600 g/mol), thermostable, soluble, and film‐forming materials were obtained. The polymers were photoluminescent in chloroform and showed metallic luster in the solid state. The absorption and emission in solution and in the solid state of the polymers revealed that the polymers generated a π‐stacked structure in the solid state, and the polymer molecules in the film were ordered. Thin films of poly[3‐dodecylthiophen‐2,5‐diylethynylene‐(benzo[1,2,5]thiadiazole‐4,7‐diyl)ethynylene] ( P‐1 ), poly[3,4‐di dodecylthiophen‐2,5‐diylethynylene‐(benzo[1,2,5]thiadiazole‐4,7‐diyl)ethynylene] ( P‐2 ), poly[3‐dodecylthiophene‐2,5‐diylethynylene‐(2,3‐dipyridine‐2‐ylquinoxaline‐5,8‐diyl)ethynylene] ( P‐3 ), and poly[3,4‐didodecylthiophene‐2,5‐diylethynylene‐(2,3‐dipyridine‐2‐ylquinoxaline‐5,8‐diyl)‐ethynylene] ( P‐4 ) exhibited an optical band gap of ~1.85–2.08 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers were determined from electrochemical measurements. In the absorption and emission spectra of these polymers in chloroform/methanol mixtures, all the polymers revealed solvatochromic effects, which were related to the formation of aggregates, as confirmed by temperature‐dependence absorption investigations. The absorption spectra of P‐2 and P‐4 at different temperatures also revealed significant effects of the structure on the molecular interactions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6445–6454, 2005  相似文献   

14.
The femtosecond transient absorption (TA) characterization of a new benzothiadiazole (BT)‐based donor–acceptor conjugated copolymer, poly[(2,6‐dithieno[3,2‐b:2′,3′‐d]thiophene)‐alt‐(4,7‐di(4‐octyldodecylthiopen‐2‐yl)‐2,1,3‐benzo[c][1,2,5]thiadiazole (PBT), as well as its fluorinated derivatives, PFBT and PDFBT, is carried out. Additionally, bulk heterojunction (BHJ) films consisting of the copolymers and [6,6]‐phenyl‐C71‐butylic acid methyl ester (PC70BM) are examined using TA spectroscopy. Both the singlet excited state dynamics in the copolymers and the charge transfer state dynamics in the BHJs are investigated in terms of fluorination dependency; the fluorinated copolymers exhibit less singlet exciton recombination rate than the fluorine‐free copolymer, and the BHJs including the fluorinated copolymers display slower monomolecular recombination than the fluorine‐free analogue. Furthermore, the excitation‐intensity‐dependent TA dynamics of the copolymers and BHJs is investigated, revealing that, when sufficiently high excitation intensity is used to induce annihilation processes, the fluorinated copolymers and BHJs incorporating the fluorinated copolymers show more rapid TA decay ascribable to morphological enhancement. These TA spectroscopic findings are found to correlate with the device characteristics with respect to fluorinated content in the polymer solar cells. In particular, both the short‐circuit current density and fill factor of BHJ solar cells correspond closely with the fast decay parameters of the BHJ films under high excitation intensity.

  相似文献   


15.
Amongst the different optoelectronic applications of conjugated polymers, waveguide amplifiers and optically pumped lasers are those requiring larger photochemical stability, owing to the large irradiation conditions under operation. In this context, suitable waveguide optimization enabling the reduction of amplified spontaneous emission (ASE) threshold values appears as important as synthetic chemistry protocols to promote polymer robustness against photo‐oxidation. In this work, we develop rib waveguides with different geometries based on four different fluorene‐based compounds and assess the influence of rib confinement on ASE properties. We observe ASE threshold values as low as 8.9 × 10?4 mJ cm?2, being among the lowest threshold values reported so far on blue emitting polymer/oligomer waveguides. We demonstrate that the enhanced ASE efficiency on some of these rib waveguides leads to a fivefold increase in operation lifetime respect to spin‐coated slab waveguides, thus confirming the impact of waveguide geometry on ASE operation stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1040–1045  相似文献   

16.
Organic π‐conjugated polymers have emerged as one of the most fascinating classes of materials as they have found utility in a host of plastic electronics technologies. The distance between π‐systems and their relative orientation dictate energy/charge transfer, conductivity, and photophysical properties of these materials in bulk. This Feature Article discusses π‐conjugated polymers and model compounds in which specific inter‐π‐system interactions are covalently enforced and the effect that the scaffolding has on optoelectronic properties.

  相似文献   


17.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

18.
Hybrid materials composed of phase‐separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block‐copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one‐dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light‐emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains.  相似文献   

19.
20.
This contribution presents the synthesis and properties of four thiophene‐containing poly(‐p‐arylene‐ethynylene)/poly(‐p‐arylene‐vinylene)s, PIa‐b and PIIa‐b , whose repeating units (RU) consist either of 1:2 or 2:2 triple bond/double bond ratio, and which bear linear alkoxy side chains not longer than octyloxy and branched 2‐ethylhexyloxy. PIa‐b and PIIa‐b exhibit similar absorption and emission behaviour in dilute solution (λa = 483–486 nm, λe = 540 nm) as well as in solid state (λa = 500, 530 nm, λe = 560 nm), whereby slightly higher fluorescence quantum yields (Φf) were obtained for PI than for PII systems, as a result of higher number of thiophene units within the RU of PII . An enhancement of the Φf‐value from 0% to 3% is obtained after replacing linear octadecyloxy in PIIc‐e by bulky branched 2‐ethylhexyloxy in PIIa‐b . Nonoptimized solar cells of configuration ITO/PEDOT:PSS/polymer: PCBM (1:3 weight ratio)/LiF/Al show open circuit voltages as high as 900 mV for PIa‐b and 800 mV for PIIa‐b . Reducing the size of the side chain from R = 2‐ethylhexyl in PIa to R = methyl in PIb leads to a significant increase of the short circuit current, I SC, from ca. 2.5 mA to ca. 3.7 mA and consequently to an enhancement of the energy conversion efficiency, ηAM1.5, from ca. 1.2% to ca. 1.7%. This is due to an extended donor‐acceptor interfacial area, as evidenced by AFM topology pictures showing smaller nanoscale clusters size in PIb than in PIa active layer. The same change led to minimal effect in PII systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1619–1631, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号