首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper presents a contribution to level‐set reinitialization in the context of discontinuous Galerkin finite element methods. We focus on high‐order polynomials for the discretization and level set geometries, which are comparable to the element size. In contrast to hyperbolic and geometric reinitialization techniques, our method relies on solving a nonlinear elliptic PDE iteratively. We critically compare two different variants of the algorithm experimentally in numerical studies. The results demonstrate that the method is stable for nontrivial test cases and shows high‐order accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we propose a numerical algorithm for time‐dependent convection–diffusion–reaction problems and compare its performance with the well‐known numerical methods in the literature. Time discretization is performed by using fractional‐step θ‐scheme, while an economical form of the residual‐free bubble method is used for the space discretization. We compare the proposed algorithm with the classical stabilized finite element methods over several benchmark problems for a wide range of problem configurations. The effect of the order in the sequence of discretization (in time and in space) to the quality of the approximation is also investigated. Numerical experiments show the improvement through the proposed algorithm over the classical methods in either cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This article considers numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the two‐dimensional non‐stationary Navier–Stokes equations. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the Crank–Nicolson scheme for the linear term and the explicit Adams–Bashforth scheme for the nonlinear term. Comparison with other methods, through a series of numerical experiments, shows that this method is almost unconditionally stable and convergent, i.e. stable and convergent when the time step is smaller than a given constant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Many planetary and astrophysical bodies are rotating rapidly, fluidic and, as a consequence of rapid rotation, in the shape of an ablate spheroid. We present an efficient element‐by‐element (EBE) finite element method for the numerical simulation of nonlinear flows in rotating incompressible fluids that are confined in an ablate spheroidal cavity with arbitrary eccentricity. Our focus is placed on temporal and spatial tetrahedral discretization of the EBE finite element method in spheroidal geometry, the EBE parallelization scheme and the validation of the nonlinear spheroidal code via both the constructed exact nonlinear solution and the special resonant forcing in the inviscid limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We deal with the numerical solution of the non‐stationary compressible Navier–Stokes equations with the aid of the backward difference formula – discontinuous Galerkin finite element method. This scheme is sufficiently stable, efficient and accurate with respect to the space as well as time coordinates. The nonlinear algebraic systems arising from the backward difference formula – discontinuous Galerkin finite element discretization are solved by an iterative Newton‐like method. The main benefit of this paper are residual error estimates that are able to identify the computational errors following from the space and time discretizations and from the inexact solution of the nonlinear algebraic systems. Thus, we propose an efficient algorithm where the algebraic, spatial and temporal errors are balanced. The computational performance of the proposed method is demonstrated by a list of numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new semi‐staggered finite volume method is presented for the solution of the incompressible Navier–Stokes equations on all‐quadrilateral (2D)/hexahedral (3D) meshes. The velocity components are defined at element node points while the pressure term is defined at element centroids. The continuity equation is satisfied exactly within each elements. The checkerboard pressure oscillations are prevented using a special filtering matrix as a preconditioner for the saddle‐point problem resulting from second‐order discretization of the incompressible Navier–Stokes equations. The preconditioned saddle‐point problem is solved using block preconditioners with GMRES solver. In order to achieve higher performance FORTRAN source code is based on highly efficient PETSc and HYPRE libraries. As test cases the 2D/3D lid‐driven cavity flow problem and the 3D flow past array of circular cylinders are solved in order to verify the accuracy of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A new implementation of surface tension effects in interfacial flow codes is proposed which is both fully implicit in space, that is the interface never has to be reconstructed, and also semi‐implicit in time, with semi‐implicit referring to the time integration of the surface tension forces. The main idea is to combine two previously separate techniques to yield a new expression for the capillary forces. The first is the continuum surface force (CSF) method, which is used to regularize the discontinuous surface tension force term. The regularization can be elegantly implemented with the use of distance functions, which makes the level set method a suitable choice for the interface‐tracking algorithm. The second is to use a finite element discretization together with the Laplace–Beltrami operator, which enables simple reformulation of the surface tension term into its semi‐implicit equivalent. The performance of the new method is benchmarked against standard explicit methods, where it is shown that the new method is significantly more robust for the chosen test problems when the time steps exceed the numerical capillary time step restriction. Some improvements are also found in the average number of nonlinear iterations and linear multigrid steps taken while solving the momentum equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
对于不同非定常流动问题, 采用合适的时间离散方法,可有效提高数值精度和计算效率. 本文在总结传统时间离散方法的基础上,对近些年发展的非线性频域法、谐波平衡法、经典时间谱方法、时间谱元法、时间有限差分法等进行了系统地总结.根据离散形式的不同,将上述方法分为时域推进法、频域谐波法、时域配点法和混合方法4大类.首先简要介绍了各类方法的数学思想以及研究进展,并重点比较了(准)周期性非定常流动计算中各方法的精度、效率以及适用范围.然后, 对各种时间离散格式的特点进行总结,并就不同的非定常流动问题如何选择合适的时间离散方法给予了建议.最后, 对这些新型时间离散格式在工程中的应用进行了简要介绍,并对其发展方向进行展望.   相似文献   

12.
We consider numerical solution of finite element discretizations of the Stokes problem. We focus on the transform-then-solve approach, which amounts to first apply a specific algebraic transformation to the linear system of equations arising from the discretization, and then solve the transformed system with an algebraic multigrid method. The approach has recently been applied to finite difference discretizations of the Stokes problem with constant viscosity, and has recommended itself as a robust and competitive solution method. In this work, we examine the extension of the approach to standard finite element discretizations of the Stokes problem, including problems with variable viscosity. The extension relies, on one hand, on the use of the successive over-relaxation method as a multigrid smoother for some finite element schemes. On the other hand, we present strategies that allow us to limit the complexity increase induced by the transformation. Numerical experiments show that for stationary problems our method is competitive compared to a reference solver based on a block diagonal preconditioner and MINRES, and suggest that the transform-then-solve approach is also more robust. In particular, for problems with variable viscosity, the transform-then-solve approach demonstrates significant speed-up with respect to the block diagonal preconditioner. The method is also particularly robust for time-dependent problems whatever the time step size.  相似文献   

13.
We introduce a stabilized finite element method for the 3D non‐Newtonian Navier–Stokes equations and a parallel domain decomposition method for solving the sparse system of nonlinear equations arising from the discretization. Non‐Newtonian flow problems are, generally speaking, more challenging than Newtonian flows because the nonlinearities are not only in the convection term but also in the viscosity term, which depends on the shear rate. Many good iterative methods and preconditioning techniques that work well for the Newtonian flows do not work well for the non‐Newtonian flows. We employ a Galerkin/least squares finite element method, with stabilization parameters adjusted to count the non‐Newtonian effect, to discretize the equations, and the resulting highly nonlinear system of equations is solved by a Newton–Krylov–Schwarz algorithm. In this study, we apply the proposed method to some inelastic power‐law fluid flows through the eccentric annuli with inner cylinder rotation and investigate the robustness of the method with respect to some physical parameters, including the power‐law index and the Reynolds number ratios. We then report the superlinear speedup achieved by the domain decomposition algorithm on a computer with up to 512 processors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We consider solution methods for large systems of linear equations that arise from the finite element discretization of the incompressible Navier–Stokes equations. These systems are of the so‐called saddle point type, which means that there is a large block of zeros on the main diagonal. To solve these types of systems efficiently, several block preconditioners have been published. These types of preconditioners require adaptation of standard finite element packages. The alternative is to apply a standard ILU preconditioner in combination with a suitable renumbering of unknowns. We introduce a reordering technique for the degrees of freedom that makes the application of ILU relatively fast. We compare the performance of this technique with some block preconditioners. The performance appears to depend on grid size, Reynolds number and quality of the mesh. For medium‐sized problems, which are of practical interest, we show that the reordering technique is competitive with the block preconditioners. Its simple implementation makes it worthwhile to implement it in the standard finite element method software. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We develop simulation tools for the non-stationary incompressible 2D Navier--Stokes equations. The most important components of the finite element code are: the fractional step ?-scheme, which is of second-order accuracy and strongly A-stable, for the time discretization; a fixed point defect correction method with adaptive step length control for the non-linear problems (stationary Navier-Stokes equations); a modified upwind discretization of higher-order accuracy for the convective terms. Finally, the resulting nonsymmetric linear subproblems are treated by a special multigrid algorithm which is adapted to the quadrilateral non-conforming discretely divergence-free finite elements. For the graphical postprocess we use a fully non-stationary and interactive particle-tracing method. With extensive test calculations we show that our method is a candidate for a ‘black box’ solver.  相似文献   

17.
An efficient solution strategy for the simulation of incompressible fluids needs adequate and accurate space and time discretization schemes. In this paper, for the space discretization, we use an inf–sup stable finite element method and for the time discretization, Radau‐IIA methods of higher order, which have the advantage that the pressure component has convergence order s in time, where s is the number of internal stages. The disadvantage of this approach is that we have a high computational amount of work, because large nonlinear systems of equations have to solved. In this paper, we use a transformation of the coefficient matrix and the simplified Newton method. This approach has the effect that our large nonlinear systems split into smaller ones, which can now also be solved in parallel. For the parallelization of the code we use the software component technology and the Component Template Library. Numerical examples show that high order in the pressure component can be achieved and that the proposed solution technique is very effective. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson’s ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.  相似文献   

20.
A new mixed‐interpolation finite element method is presented for the two‐dimensional numerical simulation of incompressible magnetohydrodynamic (MHD) flows which involve convective heat transfer. The proposed method applies the nodal shape functions, which are locally defined in nine‐node elements, for the discretization of the Navier–Stokes and energy equations, and the vector shape functions, which are locally defined in four‐node elements, for the discretization of the electromagnetic field equations. The use of the vector shape functions allows the solenoidal condition on the magnetic field to be automatically satisfied in each four‐node element. In addition, efficient approximation procedures for the calculation of the integrals in the discretized equations are adopted to achieve high‐speed computation. With the use of the proposed numerical scheme, MHD channel flow and MHD natural convection under a constant applied magnetic field are simulated at different Hartmann numbers. The accuracy and robustness of the method are verified through these numerical tests in which both undistorted and distorted meshes are employed for comparison of numerical solutions. Furthermore, it is shown that the calculation speed for the proposed scheme is much higher compared with that for a conventional numerical integration scheme under the condition of almost the same memory consumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号