首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO) n (n = 3–5) and Ru2(CO) n (n = 8,9) have been investigated using density functional theory. Sixteen isomers are obtained. For Ru(CO)5, the lowest-energy structure is the singlet D 3h trigonal bipyramid. Similar to Os(CO)5, the distorted square pyramid isomer with C 2v symmetry lies ∼7 kJ·mol−1 higher in energy. For the unsaturated mononuclear ruthenium carbonyls Ru(CO)4 and Ru(CO)3, a singlet structure with C 2v symmetry and a C s bent T-shaped structure are the lowest-energy structures, respectively. The global minimum for the Ru2(CO)9 is a singly bridged (CO)4Ru(μ-CO)Ru(CO)4 structure. A triply bridged Ru2(CO)6(μ-CO)3 structure analogous to the known Fe2(CO)9 structure is predicted to lie very close in energy to the global minimum. For Ru2(CO)8, the doubly bridged C 2 structure is predicted to be the global minimum. For the lowest-energy structures of M2(CO) n (M = Fe, Ru, Os, n = 9,8), it is found that both iron and ruthenium are favored to form structures containing more bridging carbonyl groups, while osmium prefers to have structures with less bridging carbonyl groups. The study of dissociation energy shows that the dissociation of Ru2(CO)9 into the mononuclear fragments Ru(CO)5 + Ru(CO)4 is a less energetically demanding process than the dissociation of one carbonyl group from Ru2(CO)9 to give Ru2(CO)8.  相似文献   

2.
Gas‐phase ruthenium clusters Run+ (n=2–6) are employed as model systems to discover the origin of the outstanding performance of supported sub‐nanometer ruthenium particles in the catalytic CO methanation reaction with relevance to the hydrogen feed‐gas purification for advanced fuel‐cell applications. Using ion‐trap mass spectrometry in conjunction with first‐principles density functional theory calculations three fundamental properties of these clusters are identified which determine the selectivity and catalytic activity: high reactivity toward CO in contrast to inertness in the reaction with CO2; promotion of cooperatively enhanced H2 coadsorption and dissociation on pre‐formed ruthenium carbonyl clusters, that is, no CO poisoning occurs; and the presence of Ru‐atom sites with a low number of metal–metal bonds, which are particularly active for H2 coadsorption and activation. Furthermore, comprehensive theoretical investigations provide mechanistic insight into the CO methanation reaction and discover a reaction route involving the formation of a formyl‐type intermediate.  相似文献   

3.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

4.
The correlation between structural and chemical properties of bimetallic PtRu/Ru(0001) model catalysts and their modification upon stepwise annealing of a submonolayer Pt‐covered Ru(0001) surface up to the formation of an equilibrated PtxRu1?x/Ru(0001) monolayer surface alloy was investigated by scanning tunneling microscopy and by the adsorption of CO and D2 probe molecules. Both temperature‐programmed desorption and IR measurements demonstrate the influence of the surface structure on the adsorption properties of the bimetallic surface, which can be explained by changes of the composition of the adsorption ensembles (ensemble effects) for D adsorption and by changes in the electronic interaction (ligand effects, strain effects) of the metallic constituents for CO and D adsorption upon alloy formation.  相似文献   

5.
The Cd underpotential deposition (UPD) process on Au(111) was analyzed by means of combined electrochemical measurements and in situ scanning tunneling microscopy (STM). In the underpotential range 300?ΔE (mV) ?400, 2D Cd islands are formed on the fcc regions of the Au(111)‐(√3 × 22) reconstructed surface without lifting the reconstruction. At lower underpotentials, the 2D Cd islands grow and, simultaneously, new 2D islands nucleate and coalesce with the previous ones forming a complete condensed Cd monolayer (ML). STM images and long time polarization experiments performed at ΔE = 70 mV demonstrate the formation of an Au? Cd surface alloy. At ΔE = 10 mV, the formation of the complete Cd ML is accompanied by a significant Au? Cd surface alloying and the kinetic results reveal two different solid‐state diffusion processes. The first one, with a diffusion coefficient D1 = 4 × 10?17 cm2 s?1, could be ascribed to the mutual diffusion of Au and Cd atoms through a highly distorted (vacancy‐rich) Au? Cd alloy layer. The second and faster diffusion process (D2 = 7 × 10?16 cm2 s?1) is associated with the appearance of an additional peak in the anodic stripping curves and could be attributed to the formation of another CdzAux alloy phase. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In the present work, we mainly study dissociation of the C 2B1, D2A1, and E2B2 states of the SO2+ ion using the complete active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods. We first performed CASPT2 potential energy curve (PEC) calculations for S‐ and O‐loss dissociation from the X, A, B, C, D, and E primarily ionization states and many quartet states. For studying S‐loss predissociation of the C, D, and E states by the quartet states to the first, second, and third S‐loss dissociation limits, the CASSCF minimum energy crossing point (MECP) calculations for the doublet/quartet state pairs were performed, and then the CASPT2 energies and CASSCF spin‐orbit couplings were calculated at the MECPs. Our calculations predict eight S‐loss predissociation processes (via MECPs and transition states) for the C, D, and E states and the energetics for these processes are reported. This study indicates that the C and D states can adiabatically dissociate to the first O‐loss dissociation limit. Our calculations (PEC and MECP) predict a predissociation process for the E state to the first O‐loss limit. Our calculations also predict that the E2B2 state could dissociate to the first S‐ and O‐loss limits via the A2B2E2B2 transition. On the basis of the 13 predicted processes, we discussed the S‐ and O‐loss dissociation mechanisms of the C, D, and E states proposed in the previous experimental studies. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
Ruthenium(II) complexes bearing a redox-active tridentate ligand 4′-(2,5-dimethoxyphenyl)-2,2′:6′,2′′-terpyridine (tpyOMe), analogous to terpyridine, and 2,2′-bipyridine (bpy) were synthesized by the sequential replacement of Cl by CH3CN and CO on the complex. The new ruthenium complexes were characterized by various methods including IR and NMR. The molecular structures of [Ru(tpyOMe)(bpy)(CH3CN)]2+ and two kinds of [Ru(tpyOMe)(bpy)(CO)]2+ were determined by X-ray crystallography. The incorporation of monodentate ligands (Cl, CH3CN and CO) regulated the energy levels of the MLCT transitions and the metal-centered redox potentials of the complexes. The kinetic data observed in this study indicates that the ligand replacement reaction of [Ru(tpyOMe)(bpy)Cl]+ to [Ru(tpyOMe)(bpy)(CH3CN)]2+ proceeds by a solvent-assisted dissociation process.  相似文献   

8.
Dimers of 2‐substituted N,N′‐dimethylbenzimidazoline radicals, (2‐Y‐DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n‐dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS‐pentacene), in solution. X‐ray data and DFT calculations both indicate a longer C?C bond for (2‐Cyc‐DMBI)2 than (2‐Fc‐DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2‐to‐A electron transfer, D2 reacts with A to form D+ and A? by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5 D2 redox potentials—the effective reducing strengths of the dimers—vary little within the series (ca. ?1.9 V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n‐dopants, and for future dopant design, are discussed.  相似文献   

9.
The adsorption and reaction of acetaldehyde on the clean and CO pre-covered Ru(0001) surfaces have been investigated using temperature programmed desorption method. On the clean Ru(0001) surface, the decomposition of acetaldehyde is the main reaction channel, with little polymerization occurring. However, on the CO pre-covered Ru(0001) surface, the decomposition of acetaldehyde is inhibited considerably with increasing CO coverage. Whereas, the polymerization occurs efficiently, especially at high CO coverage (θCO>0.5 ML), which is strongly CO coverage dependent. Combined with previous studies, the well-ordered hexagonal structure of CO layer formed on the Ru(0001) surface at high CO coverage that matches the configuration of paraldehyde is likely to be the origin of this remarkable phenomenon.  相似文献   

10.
Neutral hydrido complexes [ML]ClH(PPh3)3 ([ML] = Ru(CO), Os(CO) and Ir(Cl)] react with thionitrosodimethylamine, Me2NNS, to give [ML]ClH-(SNNMe2)(PPh3)2 with H trans to Me2NNS, while the hydrido cations cis,trans-[[ML]H(SNNMe2)2(PPh3)2]+ are obtained from Me2NNS and [Ru(NCMe)2(CO)-(PPh3)2]+, [OsH(OH2)(CO)(PPh3)3]+ and [IrClH(NCMe)2(PPh3)2]+, respectively. The coordinatively unsaturated aryl complexes [ML′]Cl(p-tolyl)(PPh3)2 ([ML′]Ru(CO), Os(CO) and Os(CS)) coordinate one molecule of Me2NNS to give [ML′]Cl(p-tolyl)(SNNMe2)(PPh3)2, the chloride ligands of which are labile. Spectroscopic data suggest that in all these complexes the Me2NNS ligand adopts a η1(S) coordination mode.  相似文献   

11.
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M‐NPs) have been reproducibly obtained by facile, rapid (3 min), and energy‐saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV‐photolytic (1000 W, 15 min) or conventional thermal decomposition (180–250 °C, 6–12 h) of [Mx(CO)y] in ILs. The MWI‐obtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long‐term stable M‐NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)?1 h?1 and 884 (mol product) (mol Rh)?1 h?1 and give almost quantitative conversion within 2 h at 10 bar H2 and 90 °C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru‐NPs.  相似文献   

12.
We present an investigation of isostructural complexes that feature unsupported direct bonds between a formally trivalent lanthanide ion (Dy3+) and either a first‐row (Fe) or a second‐row (Ru) transition metal (TM) ion. The sterically rigid, yet not too bulky ligand PyCp22? (PyCp22?=[2,6‐(CH2C5H3)2C5H3N]2?) facilitates the isolation and characterization of PyCp2Dy?FeCp(CO)2 ( 1 ; d(Dy–Fe)=2.884(2) Å) and PyCp2Dy?RuCp(CO)2 ( 2 ; d(Dy–Ru)=2.9508(5) Å). Computational and spectroscopic studies suggest strong TM→Dy bonding interactions. Both complexes exhibit field‐induced slow magnetic relaxation with effectively identical energy barriers to magnetization reversal. However, in going from Dy?Fe to Dy?Ru bonding, we observed faster magnetic relaxation at a given temperature and larger direct and Raman coefficients, which could be due to differences in the bonding and/or spin–phonon coupling contributions to magnetic relaxation.  相似文献   

13.
The photodissociation of gaseous benzaldehyde (C6H5CHO) at 193, 248, and 266 nm using multimass ion imaging and step‐scan time‐resolved Fourier‐transform infrared emission techniques is investigated. We also characterize the potential energies with the CCSD(T)/6‐311+G(3df,2p) method and predict the branching ratios for various channels of dissociation. Upon photolysis at 248 and 266 nm, two major channels for formation of HCO and CO, with relative branching of 0.37:0.63 and 0.20:0.80, respectively, are observed. The C6H5+HCO channel has two components with large and small recoil velocities; the rapid component with average translational energy of approximately 25 kJ mol?1 dominates. The C6H6+CO channel has a similar distribution of translational energy for these two components. IR emission from internally excited C6H5CHO, ν3 (v=1) of HCO, and levels v≤2, J≤43 of CO are observed; the latter has an average rotational energy of approximately 13 kJ mol?1 and vibrational energy of approximately 6 kJ mol?1. Upon photolysis at 193 nm, similar distributions of energy are observed, except that the C6H5+HCO channel becomes the only major channel with a branching ratio of 0.82±0.10 and an increased proportion of the slow component; IR emission from levels ν1 (v=1) and ν3 (v=1 and 2) of HCO and v≤2, J≤43 of CO are observed; the latter has an average energy similar to that observed in photolysis at 248 nm. The observed product yields at different dissociation energies are compared to statistical‐theory predicted results based on the computed singlet and triplet potential‐energy surfaces.  相似文献   

14.
A series of ruthenium hydride compounds containing substituted bidentate pyrrole‐imine ligands were synthesized and characterized. Reacting RuHCl(CO)(PPh3)3 with one equivalent of [C4H3NH(2‐CH=NR)] in ethanol in the presence of KOH gave compounds {RuH(CO)(PPh3)2[C4H3N(2‐CH=NR)]} where trans‐Py‐Ru‐H 1, R = CH2CH2C6H9; cis‐Py‐Ru‐H 2, R = Ph‐2‐Me; and cis‐Py‐Ru‐H 3, R = C6H11. Heating trans‐Py‐Ru‐H 1 in toluene at 70°C for 12 hr resulted a thermal conversion of the trans‐Py‐Ru‐H 1 into its cis form, {RuH(CO)(PPh3)2[C4H3N(2‐CH=NCH2CH2C6H9)]} (cis‐Py‐Ru‐H 1) in very high yield. The 1H NMR spectra of trans‐Py‐Ru‐H 1, cis‐Py‐Ru‐H 2, cis‐Py‐Ru‐H 3, and cis‐Py‐Ru‐H 1 all show a typical triplet at ca. δ–11 for the hydride. The trans and cis form indicate the relative positions of pyrrole ring and hydride. The geometries of trans‐Py‐Ru‐H 1, cis‐Py‐Ru‐H 1, and cis‐Py‐Ru‐H 3 are relatively similar showing typical octahedral geometries with two PPh3 fragments arranged in trans positions.  相似文献   

15.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

16.
The potential energy profiles for the fragmentations that lead to [C5H5O]+ and [C4H6]+? ions from the molecular ions [C5H6O]+? of E‐2,4‐pentadienal were obtained from calculations at the UB3LYP/6‐311G + + (3df,3pd)//UB3LYP/6‐31G(d,p) level of theory. Kinetic barriers and harmonic frequencies obtained by the density functional method were then employed in Rice–Ramsperger–Kassel–Marcus calculations of individual rate coefficients for a large number of reaction steps. The pre‐equilibrium and rate‐controlling step approximations were applied to different regions of the complex potential energy surface, allowing the overall rate of decomposition to be calculated and discriminated between three rival pathways: C? H bond cleavage, decarbonylation and cyclization. These processes should have to compete for an equilibrated mixture of four conformers of the E‐2,4‐pentadienal ions. The direct dissociation, however, can only become important in the high‐energy regime. In contrast, loss of CO and cyclization are observable processes in the metastable kinetic window. The former involves a slow 1,2‐hydrogen shift from the carbonyl group that is immediately followed by the formation of an ion‐neutral complex which, in turn, decomposes rapidly to the strans‐1,3‐butadiene ion [C4H6]+?. The predominating metastable channel is the second one, that is, a multi‐step ring closure which starts with a rate‐limiting cistrans isomerization. This process yields a mixture of interconverting pyran ions that dissociates to the pyrylium ions [C5H5O]+. These results can be used to rationalize the CID mass spectrum of E‐2,4‐pentadienal in a low‐energy regime. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The reaction mechanism of CO oxidation on the Co3O4 (110) and Co3O4 (111) surfaces is investigated by means of spin‐polarized density functional theory (DFT) within the GGA+U framework. Adsorption situation and complete reaction cycles for CO oxidation are clarified. The results indicate that 1) the U value can affect the calculated energetic result significantly, not only the absolute adsorption energy but also the trend in adsorption energy; 2) CO can directly react with surface lattice oxygen atoms (O2f/O3f) to form CO2 via the Mars–van Krevelen reaction mechanism on both (110)‐B and (111)‐B; 3) pre‐adsorbed molecular O2 can enhance CO oxidation through the channel in which it directly reacts with molecular CO to form CO2 [O2(a)+CO(g)→CO2(g)+O(a)] on (110)‐A/(111)‐A; 4) CO oxidation is a structure‐sensitive reaction, and the activation energy of CO oxidation follows the order of Co3O4 (111)‐A(0.78 eV)>Co3O4 (111)‐B (0.68 eV)>Co3O4 (110)‐A (0.51 eV)>Co3O4 (110)‐B (0.41 eV), that is, the (110) surface shows higher reactivity for CO oxidation than the (111) surface; 5) in addition to the O2f, it was also found that Co3+ is more active than Co2+, so both O2f and Co3+ control the catalytic activity of CO oxidation on Co3O4, as opposed to a previous DFT study which concluded that either Co3+ or O2f is the active site.  相似文献   

18.
Density functional calculations at the BP86/TZ2P level were carried out to understand the ligand properties of the 16‐valence‐electron(VE) Group 14 complexes [(PMe3)2Cl2M(E)] ( 1ME ) and the 18‐VE Group 14 complexes [(PMe3)2(CO)2M(E)] ( 2ME ; M=Fe, Ru, Os; E=C, Si, Ge, Sn) in complexation with W(CO)5. Calculations were also carried out for the complexes (CO)5W–EO. The complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] bind strongly to W(CO)5 yielding the adducts 1ME–W(CO)5 and 2ME–W(CO)5 , which have C2v equilibrium geometries. The bond strengths of the heavier Group 14 ligands 1ME (E=Si–Sn) are uniformly larger, by about 6–7 kcal mol?1, than those of the respective EO ligand in (CO)5W‐EO, while the carbon complexes 1MC–W(CO)5 have comparable bond dissociation energies (BDE) to CO. The heavier 18‐VE ligands 2ME (E=Si–Sn) are about 23–25 kcal mol?1 more strongly bonded than the associated EO ligand, while the BDE of 2MC is about 17–21 kcal mol?1 larger than that of CO. Analysis of the bonding with an energy‐decomposition scheme reveals that 1ME is isolobal with EO and that the nature of the bonding in 1ME–W(CO)5 is very similar to that in (CO)5W–EO. The ligands 1ME are slightly weaker π acceptors than EO while the π‐acceptor strength of 2ME is even lower.  相似文献   

19.
Catalytic oxidation has been recognized as one of the most efficient and promising techniques for the abatement of CO and volatile organic compounds. In the present work, the CO oxidation mechanism on perfect Cu2O (111) surface was investigated by using density functional theory (DFT) calculations with the periodic surface model. The unsaturated singly coordinated Cu+ site of Cu2O (111) surface could effectively adsorb gaseous CO molecule with a strong adsorption energy of −1.558 eV. The adsorbed O on Cu2O (111) surface is very active toward CO oxidation with only 0.269 eV energy barrier. The reaction between CO and lattice O is the rate‐determining step of Mars‐van‐Krevelen (MvK) type CO oxidation with the energy barrier of 1.629 eV. The CO oxidation cycle initiated by the reaction between coadsorbed CO and O2 at the CuI site has a relatively lower energy barrier of 1.082 eV and is, therefore, more likely to proceed compared with the MvK cycle. Microkinetic rate constants of elementary reaction steps based on the transition state theory were deduced, which could be helpful in the kinetic modeling of CO oxidation on Cu2O surface.  相似文献   

20.
The S(1D2)+CO(X1Σ+) product channel from photodissociation of OCS at 217 nm has been measured using the DC slice velocity map imaging (VMI) technique in combination with resonance enhanced multiphoton ionization (REMPI). Two diflerent REMPI intermediate states (1F3 and 1P1) and several pump-probe laser polarization geometries are used to detect the angular momentum polarization of the photofragmented S(1D2). The molecular- frame polarization parameters, as well as the laboratory-frame anisotropy parameters, for individual rotational states of co-fragment CO, are determined using two diflerent full quantum theories. The measured total kinetic energy release spectrum from photodissociation of OCS indicates two dissociation channels, corresponding to the fast and slow recoiling velocities of S(1D2), respectively. The slow channel is concluded to originate from an initial photoexcitation to the A(1A') state, followed by a non-adiabatic transition to the ground state. The fast channel is found to follow a coherent excitation to A(1A') and B(1A') states, where contributions of the two states are almost equal at 217 nm. The determined alignment and anisotropy parameters further indicate that the slow channel follows an incoherent excitation, while the fast channel follows a coherent excitation to A(1A') and B(1A') states with a phase di erence of π/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号