首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Time consuming meshing can be avoided when the solution algorithm can tackle grids that do not fit the shape of immersed objects. This work presents applications of a recently proposed immersed boundary—body conformal enrichment method to the solution of the flow around complex shaped surfaces such as those of a metallic foam matrix. The method produces solutions of the flow satisfying accurately Dirichlet boundary conditions imposed on the immersed fluid/solid interface. The boundary of immersed objects is defined using a level‐set function, and the finite element discretization of interface elements is enriched with additional degrees of freedom, which are eliminated at element level. The method is first validated in the case of flow problems for which reference solutions on body‐conformal grids can be obtained: flow around an array of spheres and flow around periodic arrays of cylinders. Then, solutions are shown for the more complex flow inside a metallic foam matrix. A multiscale approach combining the solution at the pore level by the immersed boundary method and the macro‐scale solution with simulated permeability is used to solve actual experimental configurations. The computed pressure drop as a function of the flow rate on the macro scale configuration replicating two experimental setups is compared with the experimental data for various foam thicknesses. Copyright © 2011 National Research Council Canada  相似文献   

2.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

3.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A nested multi‐grid solution algorithm has been developed for an adaptive Cartesian/Quad grid viscous flow solver. Body‐fitted adaptive Quad (quadrilateral) grids are generated around solid bodies through ‘surface extrusion’. The Quad grids are then overlapped with an adaptive Cartesian grid. Quadtree data structures are employed to record both the Quad and Cartesian grids. The Cartesian grid is generated through recursive sub‐division of a single root, whereas the Quad grids start from multiple roots—a forest of Quadtrees, representing the coarsest possible Quad grids. Cell‐cutting is performed at the Cartesian/Quad grid interface to merge the Cartesian and Quad grids into a single unstructured grid with arbitrary cell topologies (i.e., arbitrary polygons). Because of the hierarchical nature of the data structure, many levels of coarse grids have already been built in. The coarsening of the unstructured grid is based on the Quadtree data structure through reverse tree traversal. Issues arising from grid coarsening are discussed and solutions are developed. The flow solver is based on a cell‐centered finite volume discretization, Roe's flux splitting, a least‐squares linear reconstruction, and a differentiable limiter developed by Venkatakrishnan in a modified form. A local time stepping scheme is used to handle very small cut cells produced in cell‐cutting. Several cycling strategies, such as the saw‐tooth, W‐ and V‐cycles, have been studies. The V‐cycle has been found to be the most efficient. In general, the multi‐grid solution algorithm has been shown to greatly speed up convergence to steady state—by one to two orders. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, an approach is proposed for solving the 3D shallow water equations with embedded boundaries that are not aligned with the underlying horizontal Cartesian grid. A hybrid cut‐cell/ghost‐cell method is used together with a direction‐splitting implicit solver: Ghost cells are used for the momentum equations in order to prescribe the correct boundary condition at the immersed boundary, while cut cells are used in the continuity equation in order to conserve mass. The resulting scheme is robust, does not suffer any time step limitation for small cut cells, and conserves fluid mass up to machine precision. Moreover, the solver displays a second‐order spatial accuracy, both globally and locally. Comparisons with analytical solutions and reference numerical solutions on curvilinear grids confirm the quality of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In a previous work (Int. J. Numer. Meth. Fluids 2007; 55 :867–897), we presented a two‐phase level set method to simulate air/water turbulent flows using curvilinear body‐fitted grids for ship hydrodynamics problems. This two‐phase level set method explicitly enforces jump conditions across the interface, thus resulting in a fully coupled representation of the air/water flow. Though the method works well with multiblock curvilinear grids, severe robustness problems were found when attempting to use it with overset grids. The problem was tracked to small unphysical level set discontinuities across the overset grids with large differences in curvature. Though negligible for single‐phase approaches, the problem magnifies with large density differences between the phases, causing computation failures. In this paper, we present a geometry‐based level set method for curvilinear overset grids that overcomes these difficulties. The level set transport and reinitialization equations are not discretized along grid coordinates, but along the upwind streamline and level set gradient directions, respectively. The method is essentially an unstructured approach that is transparent to the differences between overset grids, but still the discretization is under the framework of a finite differences approach. As a result, significant improvements in robustness and to a less extent in accuracy are achieved for the level set function interpolation between overset grids, especially with big differences in grid curvature. Example tests are shown for the case of bow breaking waves around the surface combatant model David Taylor Model Basin (DTMB) 5415 and for the steady‐state ONR Tumblehome DTMB 5613 with superstructure. In the first case, the results are compared against experimental data available and in the second against results of a semi‐coupled method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a new immersed boundary (IB) method for solving fluid flow problems in the presence of rigid objects which are not represented by the mesh. Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Important benefit would be reached if we are able to solve the flow without the need of generating a mesh that fits the shape of the immersed objects. This work presents a finite element IB method using a discretization covering the entire domain of interest, including the volume occupied by immersed objects, and which produces solutions of the flow satisfying accurately the boundary conditions at the surface of immersed bodies. In other words the finite element solution represents accurately the presence of immersed bodies while the mesh does not. This is done by including additional degrees of freedom on interface cut elements which are then eliminated at element level. The boundary of immersed objects is defined using a level set function. Solutions are shown for various flow problems and the accuracy of the present approach is measured with respect to solutions obtained on body‐fitted meshes. Copyright © 2010 Crown in the right of Canada.  相似文献   

8.
A multi‐layer hybrid grid method is constructed to simulate complex flow field around 2‐D and 3‐D configuration. The method combines Cartesian grids with structured grids and triangular meshes to provide great flexibility in discretizing a domain. We generate the body‐fitted structured grids near the wall surface and the Cartesian grids for the far field. In addition, we regard the triangular meshes as an adhesive to link each grid part. Coupled with a tree data structure, the Cartesian grid is generated automatically through a cell‐cutting algorithm. The grid merging methodology is discussed, which can smooth hybrid grids and improve the quality of the grids. A cell‐centred finite volume flow solver has been developed in combination with a dual‐time stepping scheme. The flow solver supports arbitrary control volume cells. Both inviscid and viscous flows are computed by solving the Euler and Navier–Stokes equations. The above methods and algorithms have been validated on some test cases. Computed results are presented and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes a non‐iterative operator‐splitting algorithm for computing all‐speed flows in complex geometries. A pressure‐based algorithm is adopted as the base, in which pressure, instead of density, is a primary variable, thus allowing for a unified formulation for all Mach numbers. The focus is on adapting the method for (a) flows at all speeds, and (b) multiblock, non‐orthogonal, body‐fitted grids for very complex geometries. Key features of the formulation include special treatment of mass fluxes at control volume interfaces to avoid pressure–velocity decoupling for incompressible (low Mach number limit) flows and to provide robust pressure–velocity–density coupling for compressible (high‐speed) flows. The method is shown to be robust for all Mach number regimes for both steady and unsteady flows; it is found to be stable for CFL numbers of order ten, allowing large time steps to be taken for steady flows. Enhancements to the method which allow for stable solutions to be obtained on non‐orthogonal grids are also discussed. The method is found to be very reliable even in complex engineering applications such as unsteady rotor–stator interactions in turbulent, all‐speed turbomachinery flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
A coupled ghost fluid/two‐phase level set method to simulate air/water turbulent flow for complex geometries using curvilinear body‐fitted grids is presented. The proposed method is intended to treat ship hydrodynamics problems. The original level set method for moving interface flows was based on Heaviside functions to smooth all fluid properties across the interface. We call this the Heaviside function method (HFM). The HFM requires fine grids across the interface. The ghost fluid method (GFM) has been designed to explicitly enforce the interfacial jump conditions, but the implementation of the jump conditions in curvilinear grids is intricate. To overcome these difficulties a coupled GFM/HFM method was developed in which approximate jump conditions are derived for piezometric pressure and velocity and pressure gradients based on exact continuous velocity and stress and jump in momentum conditions with the jump in density maintained but continuity of the molecular and turbulent viscosities imposed. The implementation of the ghost points is such that no duplication of memory storage is necessary. The level set method is adopted to locate the air/water interface, and a fast marching method was implemented in curvilinear grids to reinitialize the level set function. Validations are performed for three tests: super‐ and sub‐critical flow without wave breaking and an impulsive plunging wave breaking over 2D submerged bumps, and the flow around surface combatant model DTMB 5512. Comparisons are made against experimental data, HFM and single‐phase level set computations. The proposed method performed very well and shows great potential to treat complicated turbulent flows related to ship flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi‐coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single‐phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids (Annu. Rev. Fluid Mech. 2005; 37 :239–261) is extended to curvilinear grids, where no‐slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single‐phase solver (Comput. Fluids 2007; 36 :1415–1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure–velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single‐phase method, thus avoiding ill‐conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single‐phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two‐phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a multigrid algorithm is developed for the third‐order accurate solution of Cauchy–Riemann equations discretized in the cell‐vertex finite‐volume fashion: the solution values stored at vertices and the residuals defined on triangular elements. On triangular grids, this results in a highly overdetermined problem, and therefore we consider its solution that minimizes the residuals in the least‐squares norm. The standard second‐order least‐squares scheme is extended to third‐order by adding a high‐order correction term in the residual. The resulting high‐order method is shown to give sufficiently accurate solutions on relatively coarse grids. Combined with a multigrid technique, the method then becomes a highly accurate and efficient solver. We present some results to demonstrate its accuracy and efficiency, including both structured and unstructured triangular grids. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In the present investigation, a Fourier analysis is used to study the phase and group speeds of a linearized, two‐dimensional shallow water equations, in a non‐orthogonal boundary‐fitted co‐ordinate system. The phase and group speeds for the spatially discretized equations, using the second‐order scheme in an Arakawa C grid, are calculated for grids with varying degrees of non‐orthogonality and compared with those obtained from the continuous case. The spatially discrete system is seen to be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non‐orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184 : 299–320). The stability condition for the non‐orthogonal case is satisfied even when the grid non‐orthogonality angle, is as low as 30° for the Crank Nicolson and three‐time level schemes. A two‐dimensional wave deformation analysis, based on complex propagation factor developed by Leendertse (Report RM‐5294‐PR, The Rand Corp., Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two‐time level Crank–Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase error is found to increase, as the grid angle decreases for a constant Courant number, and increases as Courant number increases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
We present a new modelling strategy for improving the efficiency of computationally intensive flow problems in environmental free‐surface flows. The approach combines a recently developed semi‐implicit subgrid method with a hierarchical grid solution strategy. The method allows the incorporation of high‐resolution data on subgrid scale to obtain a more accurate and efficient hydrodynamic model. The subgrid method improves the efficiency of the hierarchical grid method by providing better solutions on coarse grids. The method is applicable to both steady and unsteady flows, but we particularly focus on river flows with steady boundary conditions. There, the combined hierarchical grid–subgrid method reduces the computational effort to obtain a steady state with factors up to 43. For unsteady models, the method can be used for efficiently generating accurate initial conditions on high‐resolution grids. Additionally, the method provides automatic insight in grid convergence. We demonstrate the efficiency and applicability of the method using a schematic test for the vortex shedding around a circular cylinder and a real‐world river case study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A family of flux‐continuous, locally conservative, finite‐volume schemes has been developed for solving the general geometry‐permeability tensor (petroleum reservoir‐simulation) pressure equation on structured and unstructured grids and are control‐volume distributed (textit Comput. Geo. 1998; 2 :259–290; Comput. Geo. 2002; 6 :433–452). The schemes are applicable to diagonal and full tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir‐simulation schemes (two‐point flux approximation) when applied to full tensor flow approximation. The family of flux‐continuous schemes is quantified by a quadrature parameterization (Int. J. Numer. Meth. Fluids 2006; 51 :1177–1203). Improved convergence (for two‐ and three‐dimensional formulation) using the quadrature parameterization has been observed for the family of flux‐continuous control‐volume distributed multi‐point flux approximation (CVD‐MPFA) schemes (Ph.D. Thesis, University of Wales, Swansea, U.K., 2007). In this paper family of flux‐continuous (CVD‐MPFA) schemes are used as a part of numerical upscaling procedure for upscaling the fine‐scale grid information (permeability) onto a coarse grid scale. A series of data‐sets (SPE, 2001) are tested where the upscaled permeability tensor is computed on a sequence of grid levels using the same fixed range of quadrature points in each case. The refinement studies presented involve:
  • (i) Refinement comparison study: In this study, permeability distribution for cells at each grid level is obtained by upscaling directly from the fine‐scale permeability field as in standard simulation practice.
  • (ii) Refinement study with renormalized permeability: In this refinement comparison, the local permeability is upscaled to the next grid level hierarchically, so that permeability values are renormalized to each coarser level. Hence, showing only the effect of increased grid resolution on upscaled permeability, compared with that obtained directly from the fine‐scale solution.
  • (iii) Refinement study with invariant permeability distribution: In this study, a classical mathematical convergence test is performed. The same coarse‐scale underlying permeability map is preserved on all grid levels including the fine‐scale reference solution.
The study is carried out for the discretization of the scheme in physical space. The benefit of using specific quadrature points is demonstrated for upscaling in this study and superconvergence is observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An Erratum has been published for this article in International Journal for Numerical Methods in Fluids 2005, 49(8): 933. We present a local‐analytic‐based discretization procedure for the numerical solution of viscous fluid flows governed by the incompressible Navier–Stokes equations. The general procedure consists of building local interpolants obtained from local analytic solutions of the linear multi‐dimensional advection–diffusion equation, prototypical of the linearized momentum equations. In view of the local analytic behaviour, the resulting computational stencil and coefficient values are functions of the local flow conditions. The velocity–pressure coupling is achieved by a discrete projection method. Numerical examples in the form of well‐established verification and validation benchmarks are presented to demonstrate the capabilities of the formulation. The discretization procedure is implemented alongside the ability to treat embedded and non‐matching grids with relative motion. Of interest are flows at high Reynolds number, ??(105)–??(107), for which the formulation is found to be robust. Applications include flow past a circular cylinder undergoing vortex‐induced vibrations (VIV) at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号