首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We show that a non-physical velocity may appear in the numerical computation of the flow of an incompressible fluid subjected to external forces. A distorted mesh and the use of a numerical method which does not rigorously ensure the incompressibility condition turn out to be responsible for this phenomenon. We illustrate it with numerical examples and we propose a projection method which improves the results. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
We consider the numerical simulation of conjugate heat transfer, incompressible turbulent flows for multicomponents systems using a stabilized finite element method. We present an immersed volume approach for thermal coupling between fluids and solids for heating high‐alloy steel inside industrial furnaces. It consists in considering a single 3D grid of the furnace and solving one set of equations with different thermal properties. A distance function enables to define precisely the position and the interface of any objects inside the volume and to provide homogeneous physical and thermodynamic properties for each subdomain. An anisotropic mesh adaptation algorithm based on the variations of the distance function is then applied to ensure an accurate capture of the discontinuities that characterize the highly heterogeneous domain. The proposed method demonstrates the capability of the model to simulate an unsteady three‐dimensional heat transfers and turbulent flows in an industrial furnace with the presence of three conducting solid bodies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
    
An improved immersed boundary–lattice Boltzmann method (IB–LBM) developed recently [28] was applied in this work to simulate three‐dimensional (3D) flows over moving objects. By enforcing the non‐slip boundary condition, the method could avoid any flow penetration to the wall. In the developed IB–LBM solver, the flow field is obtained on the non‐uniform mesh by the efficient LBM that is based on the second‐order one‐dimensional interpolation. As a consequence, its coefficients could be computed simply. By simulating flows over a stationary sphere and torus [28] accurately and efficiently, the proposed IB–LBM showed its ability to handle 3D flow problems with curved boundaries. In this paper, we further applied this method to simulate 3D flows around moving boundaries. As a first example, the flow over a rotating sphere was simulated. The obtained results agreed very well with the previous data in the literature. Then, simulation of flow over a rotating torus was conducted. The capability of the improved IB–LBM for solving 3D flows over moving objects with complex geometries was demonstrated via the simulations of fish swimming and dragonfly flight. The numerical results displayed quantitative and qualitative agreement with the date in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
    
The incompressible Navier–Stokes equations are solved by an implicit pressure correction method on Cartesian meshes with local refinement. A simple and stable ghost cell method is developed to treat the boundary condition for the immersed bodies in the flow field. Multigrid methods are developed for both velocity and pressure correction to enhance the stability and convergence of the solution process. It is shown that the spatial accuracy of the method is second order in L2 norm for both velocity and pressure. Various steady and unsteady flows over a 2D circular cylinder and a 3D sphere are computed to validate the present method. The capability of the present method to treat a moving body is also demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
  总被引:1,自引:0,他引:1  
In this work the immersed boundary method is applied to simulate incompressible turbulent flows around stationary and moving objects. The goal is to demonstrate that the immersed boundary technique along with a large eddy simulation approach is capable of simulating the effect of the so‐called leading edge vortex (LEV), which can be found in flapping wing aerodynamics. A Lagrangian method is used to approximate the solutions in the freshly cleared cells that lay within solid objects at one time step and emerge into fluid domain at the next time step. Flow around a stationary cylinder at ReD = 20, 40, and 3900 (based on cylinder diameter D) is first studied to validate the immersed boundary solver based on the finite volume scheme using a staggered grid. Then, a harmonically oscillating cylinder at ReD = 10 000 is considered to test the solver after the Lagrangian method is implemented to interpolate the solution in the freshly cleared cells. Finally, this approach is used to study flows around a stationary flat‐plate at several angles of attack and fast pitching flat‐plate. The rapidly pitching plate creates a dynamic LEV that can be used to improve the efficiency of flapping wings of micro air vehicle and to determine the optimum flapping frequency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
    
Liquid plug propagation and rupture occurring in lung airways can have a detrimental effect on epithelial cells. In this study, a numerical simulation of a liquid plug in an infinite tube is conducted using an Eulerian–Lagrangian approach and the continuous interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information about the interface mesh. Results prior to the rupture are in reasonable agreement with the study of Fujioka et al. in which a Lagrangian method is used. For unity non‐dimensional pressure drop and a Laplace number of 1000, rupture time is shown to be delayed as the initial precursor film thickness increases and rupture is not expected for thicknesses larger than 0.10 of tube radius. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage. The peak values of those stresses increase as the initial precursor film thickness is reduced. After rupture, the peaks in mechanical stresses decrease in magnitude as the plug vanishes and the flow approaches a fully developed behavior. Increasing initial pressure drop is shown to linearly increase maximum variations in wall pressure and shear stress. Decreasing the pressure drop and increasing the Laplace number appear to delay rupture because it takes longer for a fluid with large inertial forces to respond to the small pressure drop. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
两种浸入式边界方法的比较   总被引:3,自引:0,他引:3       下载免费PDF全文
谢胜百  单鹏 《力学学报》2009,41(5):618-627
介绍两类不同的浸入式边界方法及其对它的改进. 然后采用均匀矩形交错网格和压力校正投影法,对不可压流场中的二维圆柱绕流进行了数值求解并对比了两类方法的精度.计算分析表明,连续显力法具有构造简单,适用性强的优点. 但离散隐力法在物面边界精度上要优于前者. 改进后,在二阶精度的离散格式下物面边界精度较低的显示力源法的精度有一定提高,同时发现,加密网格以提高数值精度的方法对于连续显力法并不总是有效.而同样格式下,离散隐力法具有更高精度,其中预测-校正离散隐力法可以在此基础上获得更小的计算误差和更快的收敛速度. 数值解与文献已有的数值和实验结果吻合得很好,表明边界算法及其程序是可靠和有效的.   相似文献   

9.
    
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

10.
    
A variant of immersed boundary‐lattice Boltzmann method (IB‐LBM) is presented in this paper to simulate incompressible viscous flows around moving objects. As compared with the conventional IB‐LBM where the force density is computed explicitly by Hook's law or the direct forcing method and the non‐slip condition is only approximately satisfied, in the present work, the force density term is considered as the velocity correction which is determined by enforcing the non‐slip condition at the boundary. The lift and drag forces on the moving object can be easily calculated via the velocity correction on the boundary points. The capability of the present method for moving objects is well demonstrated through its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried out to exhibit the ability of the present method for implementing the elastic boundary condition. It was found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than the flapping rigid airfoil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
    
An improved near‐wall modeling for large‐eddy simulation using the immersed boundary method is proposed. It is shown in this study that the existing near‐wall modeling for the immersed boundary (IB) methods that imposes the velocity boundary condition at the IB node is not sufficient to enforce a correct wall shear stress at the IB node. A new method that imposes a shear stress condition through the modification of the subgrid scale‐eddy viscosity at the IB node is proposed. In this method, the subgrid eddy viscosity at the IB node is modified such that the viscous flux at the face adjacent to the IB node correctly approximates the total shear stress. The method is applied to simulate the fully developed turbulent flows in a plane channel and a circular pipe. It is demonstrated that the new method improves the prediction of the mean velocity and turbulence stresses in comparison with the existing wall modeling based solely on the velocity boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
用BGK格式计算不可压缩流场   总被引:5,自引:0,他引:5       下载免费PDF全文
苏铭德  徐昆  M.Ghidaoui 《力学学报》2000,32(6):641-650
简要介绍BGK方法的基本思想,数值方法及其对不可压缩流场数值计算的推广。然后详细介绍将BGK方法应用于平面方框流的结果,将其结果与Ghia的结果进行了详细的比较。本方法还用来模拟后台阶流动,所得结果与相应的实验数据进行比较。以上比较表明本方法的有效性,同时也确定在计算不可压缩流体时参数的正确选择。  相似文献   

13.
    
A double suction centrifugal machine has been studied, both experimentally and numerically, operating as a pump and as a turbine. Experimentally, the static performance of the machine working as a pump was obtained. These measurements were compared with equivalent numerical results from a URANS calculation. As a second step, the numerical results have been exploited to get detailed information about the flow in both operating modes (pump and turbine). The main goals of the study are, first, the validation of the numerical procedure proposed and second, the possible turbine operation of the impeller, which could point out a wider working range for the machine. The first aspect is handled by detailed analysis in the pump mode, according to previous experience of the research group. The second objective is obtained by using the numerical model to explore the flow fields obtained, when working in an inverse mode. Therefore, the presented results join the use of a numerical methodology and the turbine mode of operation for a centrifugal impeller, providing insight into the flow characteristics. When working as a pump, the flow at the suction side is characterized by the existence of an inlet tongue, which tends to enforce a uniform flow for the nominal conditions. For the turbine mode, flow patterns in the impeller, volute and suction regions are carefully investigated. The influence of the specific geometrical arrangement is also considered for this operation mode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
    
A finite element method for quasi‐incompressible viscous flows is presented. An equation for pressure is derived from a second‐order time accurate Taylor–Galerkin procedure that combines the mass and the momentum conservation laws. At each time step, once the pressure has been determined, the velocity field is computed solving discretized equations obtained from another second‐order time accurate scheme and a least‐squares minimization of spatial momentum residuals. The terms that stabilize the finite element method (controlling wiggles and circumventing the Babuska–Brezzi condition) arise naturally from the process, rather than being introduced a priori in the variational formulation. A comparison between the present second‐order accurate method and our previous first‐order accurate formulation is shown. The method is also demonstrated in the computation of the leaky‐lid driven cavity flow and in the simulation of a crossflow past a circular cylinder. In both cases, good agreement with previously published experimental and computational results has been obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
An analysis is made of the stress distribution and the deformation pattern near the apex of an incompressible rubber wedge under the tension of a concentrated force. The asymptotic method for the tip stress field is developed. The problem is treated as a plane strain case. Finally, the FEM numerical results agree with the theoretical ones.  相似文献   

16.
A new HLLC (Harten-Lax-van leer contact) approximate Riemann solver with the preconditioning technique based on the pseudo-compressibility formulation for numerical simulation of the incompressible viscous flows has been proposed, which follows the HLLC Riemann solver (Harten, Lax and van Leer solver with contact resolution modified by Toro) for the compressible flow system. In the authors' previous work, the preconditioned Roe's Riemann solver is applied to the finite difference discretisation of the inviscid flux for incompressible flows. Although the Roe's Riemann solver is found to be an accurate and robust scheme in various numerical computations, the HLLC Riemann solver is more suitable for the pseudo-compressible Navier--Stokes equations, in which the inviscid flux vector is a non-homogeneous function of degree one of the flow field vector, and however the Roe's solver is restricted to the homogeneous systems. Numerical investigations have been performed in order to demonstrate the efficiency and accuracy of the present procedure in both two- and three-dimensional cases. The present results are found to be in good agreement with the exact solutions, existing numerical results and experimental data.  相似文献   

17.
    
We propose a simple technique for improving computationally the efficiency of monolithic velocity–pressure solvers for incompressible flow problems. The idea consists in solving the discrete nonlinear system of governing equations in two steps: introducing ‘artificial’ compressibility first and afterwards correcting the solution by solving the original incompressible system. The speed‐up is obtained because of a better conditioning of the modified discrete system solved at the prediction step. The formulation can be easily implemented into existing monolithic codes requiring minor modification only. The paper concludes with two examples validating the formulation and facilitating the estimation of the obtained speed‐up. For the tests chosen, an average speed‐up is approximately double, suggesting that the method is a feasible approach for incompressible flows' simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
    
A new numerical method is presented for the solution of the Navier–Stokes and continuity equations governing the internal incompressible flows. The method denoted as the CVP method consists in the numerical solution of these equations in conjunction with three additional variational equations for the continuity, the vorticity and the pressure field, using a non‐staggered grid. The method is used for the study of the characteristics of the laminar fully developed flows in curved square ducts. Numerical results are presented for the effects of the flow parameters like the curvature, the Dean number and the stream pressure gradient on the velocity distributions, the friction factor and the appearance of a pair of vortices in addition to those of the familiar secondary flow. The accuracy of the method is discussed and the results are compared with those obtained by us, using a variation of the velocity–pressure linked equation methods denoted as the PLEM method and the results obtained by other methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
    
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J‐G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher‐order) finite elements. This method can achieve high‐order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
    
Recently, the author and two other coauthors have proposed a two-dimensional hybrid local domain-free discretization and immersed boundary method (LDFD-IBM), which can be used to solve the flow problem with complex geometries. In this paper, the LDFD-IBM is extended to solve a three-dimensional unsteady incompressible flow with the complex computational domain. The technical issues related to the implementation of the LDFD-IBM in three-dimensional problems are discussed in detail, particularly for the discretization of Navier-Stokes equations, mesh strategies for a three-dimensional flow, and the fast algorithm on the identification of the status of mesh nodes (ie, to identify if the mesh node is located in the solid domain, in the fluid domain, or near the immersed boundary). Numerical tests show that the LDFD-IBM can accurately solve three-dimensional incompressible problems with ease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号