首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of Cs2BaTa6Br15O3 has been elucidated by using synchrotron X‐ray powder diffraction and absorption experiments. It is built from edge‐bridged octahedral [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]4? cluster units with a singular poor metallic electron (ME) count equal to thirteen. This leads to a paramagnetic behaviour related to one unpaired electron. The arrangement of the Ta6 clusters is similar to that of Cs2LaTa6Br15O3 exhibiting 14‐MEs per [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]5? motif. The poorer electron‐count cluster presents longer metal–metal distances as foreseen according to the electronic structure of edge‐bridged hexanuclear cluster. Density functional theory (DFT) calculations on molecular models were used to rationalise the structural properties of 13‐ and 14‐ME clusters. Periodic DFT calculations demonstrate that the electronic structure of these solid‐state compounds is related to those of the discrete octahedral units. Oxygen–barium interactions seem to prevent the geometry of the octahedral cluster to strongly distort, allowing stabilisation of this unprecedented electron‐poor Ta6 cluster in the solid state.  相似文献   

2.
Based on Buckingham and Pople’s theory of magnetic double refraction, a theoretical expression is derived for a new Cotton–Mouton effect ${\phi _{{\rm{C}} - {\rm{M}}}^{(IB)} }$ in liquid induced by the crossed effect between the high dc magnetic field B0 and the nuclear magnetic moment ${m_z^{(I)} }$ . It contains temperature‐independent and ‐dependent parts. The latter is proportional to the product between anisotropy of polarizability and the nuclear magnetic shielding tensor. For this new effect ${\phi _{{\rm{C}} - {\rm{M}}}^{(IB)} }$ , its order in magnitude for a molecule with large polarizability anisotropy is estimated to be comparable to the nuclear‐spin‐induced optical Faraday rotation (NSOFR). In the multipass approach, ${\phi _{{\rm{C}} - {\rm{M}}}^{(IB)} }$ can be eliminated by time‐reversal symmetry arguments, but NSOFR is enhanced.  相似文献   

3.
The effect of a layer of electrochemically grafted 4‐diazo‐N,N‐diethylaniline (DEA) groups on the electron transfer kinetics of redox systems, displaying fast and slow heterogeneous electron transfer rate constants at edge and basal planes of carbon, was investigated. The properties of the modified electrode were characterized by cyclic voltammetry using four different inorganic redox systems (Fe(CN) , Co(phen) , Ru(NH3) , and IrCl in acidic, neutral, and basic media. Two distinct blocking behaviors and electrostatic effects were observed. More precisely, a strong blocking effect of the grafted layer on Fe(CN) and Co(phen) was found, whereas Ru(NH3) and IrCl showed to be rather unaffected by the presence of the DEA grafted layer.  相似文献   

4.
The time‐dependent‐wave‐packet method is applied to study the ionization of Br2 molecule with four ionization processes. The ground state absorption makes the photoelectron to be left in the three final ionic states: Br (X2∑), Br (A2u), and Br (B2∑), and each population of these ionic states is related with the laser intensities. The information of the dissociation can be got by analyzing the photoelectron features of the transient wave packet, which also suggests that an ionization process occurs during the dissociation, and the Br atoms that mainly resulted from the dissociation of Br2 (C1u) are ionized at later time delays as the dissociation is nearly complete. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

5.
Broken‐symmetry DFT calculations on transition‐metal clusters with more than two centers allow the hyperfine coupling constants to be extracted. Application of the proposed theoretical scheme to a tetranuclear manganese complex that models the S2 state of the oxygen‐evolving complex of photosystem II yields hyperfine parameters that can be directly compared with experimental data. The picture shows the metal–oxo core of the model and the following parameters; exchange coupling constant Jij, the expectation value of the site‐spin operator , and the isotropic hyperfine coupling parameters.

  相似文献   


6.
2‐Bromocyclohexanone is a model compound in which a 4JH2, H6 coupling constant is observed, whereas the corresponding 4JH2, H4 is absent. The observed long‐range coupling is not only a result of the known W‐type coupling, in the axial conformation, but also because of the less usual diaxial spin–spin coupling in the equatorial conformer. The carbonyl group plays a determining role in describing the coupling pathway, as concluded by natural bond orbital (NBO) analysis; although the and interactions in the axial conformer contribute for transmitting the spin information associated with the W‐type coupling, the strong and hyperconjugations in the equatorial conformer define an enhanced coupling pathway for 4JH2, H6, despite the inhibition of this coupling because of interaction and the large carbonyl angle. These findings provide the experimental evidence that orbital interactions contribute for the conformational isomerism of 2‐bromocyclohexanone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
[RuCl(arene)(μ‐Cl)]2 dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis‐ and tris(pyrazolyl)borate ligands [Na(Bp)], [Tl(Tp)], and [Tl(TpiPr, 4Br)]. Mononuclear neutral complexes [RuCl(arene)(κ2‐Bp)] ( 1 : arene=p‐cymene (cym); 2 : arene=hexamethylbenzene (hmb); 3 : arene=benzene (bz)), [RuCl(arene)(κ2‐Tp)] ( 4 : arene=cym; 6 : arene=bz), and [RuCl(arene)(κ2‐TpiPr, 4Br)] ( 7 : arene=cym, 8 : arene=hmb, 9 : arene=bz) have been always obtained with the exception of the ionic [Ru2(hmb)2(μ‐Cl)3][Tp] ( 5′ ), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru(CH3OH)(cym)(κ2‐Bp)][X] ( 10 : X=PF6, 12 : X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)(κ2‐Bp)] ( 11 ) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1 – 12 have been characterized by analytical and spectroscopic data (IR, ESI‐MS, 1H and 13C NMR spectroscopy). The structures of the thallium and calcium derivatives of ligand Tp, [Tl(Tp)] and [Ca(dmso)6][Tp]2 ? 2 DMSO, of the complexes 1 , 4 , 5′ , 6 , 11 , and of the decomposition product [RuCl(cym)(HpziPr, 4Br)2][Cl] ( 7′ ) have been confirmed by using single‐crystal X‐ray diffraction. Electrochemical studies showed that 1 – 9 and 11 undergo a single‐electron RuII→RuIII oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron‐donor characters of the bis‐ and tris(pyrazol‐1‐yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever EL ligand parameter for Bp, Tp, and TpiPr, 4Br. Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal‐centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the μ3‐binuclear complex 5′ (instead of the mononuclear 5 ) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.  相似文献   

8.
Deviations from statistical binding, that is cooperativity, in self‐assembled polynuclear complexes partly result from intermetallic interactions ΔEM,M, whose magnitudes in solution depend on a balance between electrostatic repulsion and solvation energies. These two factors have been reconciled in a simple point‐charge model, which suggests severe and counter‐intuitive deviations from predictions based solely on the Coulomb law when considering the variation of ΔEM,M with metallic charge and intermetallic separation in linear polynuclear helicates. To demonstrate this intriguing behaviour, the ten microscopic interactions that define the thermodynamic formation constants of some twenty‐nine homometallic and heterometallic polynuclear triple‐stranded helicates obtained from the coordination of the segmental ligands L1 – L11 with Zn2+ (a spherical d‐block cation) and Lu3+ (a spherical 4f‐block cation), have been extracted by using the site binding model. As predicted, but in contrast with the simplistic coulombic approach, the apparent intramolecular intermetallic interactions in solution are found to be i) more repulsive at long distance ( > ), ii) of larger magnitude when Zn2+ replaces Lu3+ ( > ) and iii) attractive between two triply charged cations held at some specific distance ( <0). The consequences of these trends are discussed for the design of polynuclear complexes in solution.  相似文献   

9.
1H, 13C and 15N nuclear magnetic resonance studies of gold(III), palladium(II) and platinum(II) chloride complexes with phenylpyridines (PPY: 4‐phenylpyridine, 4ppy; 3‐phenylpyridine, 3ppy; and 2‐phenylpyridine, 2ppy) having the general formulae [Au(PPY)Cl3], trans‐/cis‐[Pd(PPY)2Cl2] and trans‐/cis‐[Pt(PPY)2Cl2] were performed and the respective chemical shifts (δ, δ and δ) reported. 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: , , ) were discussed in relation to the type of the central atom (Au(III), Pd(II) and Pt(II)), geometry (trans‐/cis‐) and the position of a phenyl group in the pyridine ring system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We investigate the dynamics of the detachment of single polyethylene (PE) chains from a strongly adsorbing surface in vacuum using a united atom model. Various statistical properties, including the mean‐square end‐to‐end distance 〈R2〉, the mean‐square radii of gyration , , the shape factor , the torsion angle distribution, the average surface adsorption energy , the average total energy , and the average force , are analyzed. The relationship between the average force and the pulling velocity v shows two distinctive regions: a weakly dependence region at Å/ps and a strongly dependence region at Å/ps. Remarkably, the PE chain manifests force hysteresis under sequential stretching and releasing. These investigations may provide some insights into the elastic behavior of adsorbed polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2322–2332, 2007  相似文献   

11.
Pressure broadening and pressure shift of N2H+ rotational lines perturbed by collisions with He are studied for the first time using experiment and theory. Results are reported from measurements at 88 K for the rotational transitions ${j = 3 \leftarrow 2}$ , ${4 \leftarrow 3}$ , ${5 \leftarrow 4}$ and ${6 \leftarrow 5}$ with frequencies ranging from 0.28 to 0.56 THz. The agreement between experiment and theoretical data derived from close coupling calculations confirms the reliability of a theoretical framework used for state‐to‐state transition rates of interest in the interpretation of spectroscopic data from interstellar molecular clouds. The influence of hyperfine effects on shifts and widths of the rotational lines is discussed in detail. Although in principle possible, experiment and theoretical considerations lead to the conclusion that hyperfine effects only play a minor role.  相似文献   

12.
The synthesis system for mesophase formation, using the diprotic anionic surfactant N‐myristoyl‐L ‐glutamic acid (C14GluA) as the structure‐directing agent (SDA) and N‐trimethoxylsilylpropyl‐N,N,N‐trimethylammonium chloride (TMAPS) as the co‐structure‐directing agent (CSDA), has been investigated and a full‐scaled synthesis‐field diagram is presented. In this system we have obtained mesophases including three‐dimensional (3D) micellar cubic Fm m, Pm n, Fd m, micellar tetragonal P42/mnm, two‐dimensional (2D) hexagonal p6mm and bicontinuous cubic Pn m, by varying the C14GluA/NaOH/TMAPS composition ratios. From the diagram it can be concluded that the mesophase formation is affected to a high degree by the organic/inorganic‐interface curvature and the mesocage–mesocage electrostatic interaction. Bicontinuous cubic and 2D‐hexagonal phases were found in the low organic/inorganic‐interface curvature zones, whereas micellar cubic and tetragonal mesophases were found in the high organic/inorganic‐interface curvature zones. Formation of cubic Fm m and tetragonal P42/mnm was favoured in highly alkaline zones with strong mesocage–mesocage interactions, and formation of cubic Pm n and Fd m was favoured with moderate mesocage–mesocage interactions in the less alkaline zones of the diagram.  相似文献   

13.
2,4‐Trifluoromethylquinoline (TFMAQ) derivatives that have amine ( 1 ), methylamine ( 2 ), phenylamine ( 3 ), and dimethylamine ( 4 ) substituents at the 7‐position of the quinoline ring were prepared and crystallized. Six crystals including the crystal polymorphs of 2 (crystal GB and YG) and 3 (crystal B and G) were obtained and characterized by X‐ray crystallography. In solution, TFMAQ derivatives emitted relatively strong fluorescence (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =418–469 nm and Φf(s)=0.23–0.60) depending on the solvent polarity. From Lippert–Mataga plots, Δμ values in the range of 7.8–14 D were obtained. In the crystalline state, TFMAQ derivatives emitted at longer wavelengths (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464–530 nm) with lower intensity (Φf(c)=0.01–0.28) than those in n‐hexane solution. The polymorphous crystals of 2 and 3 emitted different colors: 2 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =470 and 530 nm with Φf(c)=0.04 and approximately 0.01 for crystal GB and YG, respectively; and 3 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464 and 506 nm with Φf(c)=0.28 and approximately 0.28 for crystal B and G, respectively. In both crystal polymorphs of 2 and 3 , crystals GB and G showed emission color changes by heating/melting/cooling cycles that were representative. By following the color changes in heating at the temperature below the melting point with X‐ray diffraction measurements and X‐ray crystallography, the single‐crystal‐to‐single‐crystal transformations from crystal GB to YG for 2 and from crystal B to G for 3 were revealed.  相似文献   

14.
Salt elimination protocols using Ap*K {Ap*H = (2,6‐diisopropyl‐phenyl)‐[6‐(2,4,6‐triisopropyl‐phenyl)‐pyridin‐2‐yl]‐amine} lead to the rare earth aminopyridinato complex [Ap*LuCl2(thf)2], 4 . Results of X‐ray crystal structure analyses of 4 and the corresponding single THF coordinated dimer are discussed. Ring‐opening polymerization of ε‐caprolactone initiated by complexes [Ap*LaBr2(thf)3], 2 , [Ap*YbI(thf)2]2, 3 or 4 in the presence of NaBH4 allows the preparation, in a short reaction time, of α,ω‐dihydroxytelechelic polymers with high molar mass ( up to 50,000) and moderate molar mass distributions (1.3 < / < 1.6). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3611–3619, 2007  相似文献   

15.
The Sturmian expansion of the generalized Dirac‐Coulomb Green function (Szmytkowski, J Phys B, 1997, 30, 825; erratum 1997, 30, 2747) is exploited to derive closed‐form expressions for electric $(\sigma_{E})$ and magnetic $(\sigma_{M})$ dipole shielding constants for the ground state of the relativistic hydrogen‐like atom with a point‐like and spinless nucleus of charge Ze. It is found that $\sigma_{E}=Z^{-1}$ (as it should be) and where $\gamma_{1}=\sqrt{1-(Z\alpha)^{2}}$ (α is the fine‐structure constant). This expression for $\sigma_{M}$ agrees with earlier findings of several other authors, obtained with the use of other analytical techniques, and is elementary compared to an alternative one presented recently by Cheng et al. (J Chem Phys 2009, 130, 144102), which involves an infinite series of ratios of the Euler's gamma functions. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

16.
We present the solutions of the ro‐vibrational motion of a diatomic molecule with a spatially dependent mass by solving the Dirac equation with position‐dependent mass for repulsive vector $V(r)$ and attractive scalar $S(r)$ q‐deformed Morse potential for any $\kappa$ value, within the framework of Pekeris approximation of the spin‐orbitcoupling term. The relativistic energy spectra are obtained using theNikiforov‐Uvarov method and the two‐component spinor wavefunctions are obtained in terms of the Laguerre polynomials. It is found that there exist only negative energy states for bound states, and the energy values for a fixed value of $n_r$ increase with decrease in $\kappa$ . © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

17.
The stationary states of the half‐line Coulomb potential are described by quantum‐mechanical wavefunctions, which are controlled by the Laguerre polynomials L(x). Here, we first calculate the qth‐order frequency or entropic moments of this quantum system, which is controlled by some entropic functionals of the Laguerre polynomials. These functionals are shown to be equal to a Lauricella function F(${1 \over q}$ ,…,,${1 \over q}$ ,1) by use of the Srivastava‐Niukkanen linearization relation of Laguerre polynomials. The resulting general expressions are applied to obtain the following information‐theoretic quantities of the half‐line Coulomb potential: disequilibrium, Renyi and Tsallis entropies. An alternative and simpler expression for the linear entropy is also found by means of a different method. Then, the Shannon entropy and the LMC shape complexity of the lowest and highest (Rydberg) energetic states are explicitly given; moreover, sharp information‐theoretic‐based upper bounds to these quantities are found for general physical states. These quantities are numerically discussed for the ground and various excited states. Finally, the uncertainty measures of the half‐line Coulomb potential given by the information‐theoretic lengths are discussed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
We report herein some outstanding examples of atropisomerism and tautomerism in five (meso‐)strapped porphyrins. Porphyrins S0 – S4 have been synthesised, characterised and studied in detail by spectroscopic and spectrometric techniques, and their isomeric purity verified by HPLC analysis. In particular, they exhibit perfectly well‐defined NMR spectra that display distinct patterns depending on their average symmetry at room temperature: C2v, D2d, C2h, C2v, and D2h for S0 – S4 , respectively. NH tautomerism was evidenced by variable‐low‐temperature 1H NMR experiments in [D2]dichloromethane performed on S0 (Δ${G{{{\ne}\hfill \atop {\rm 298K}\hfill}}}$ =48±1 kJ mol?1) and S1 (Δ${G{{{\ne}\hfill \atop {\rm 298K}\hfill}}}$ =55±3 kJ mol?1), which has led to an understanding of the average spectra observed for the five porphyrins at room temperature. On the other hand, S2 and S3 are stable atropisomers at room temperature, easily separated and characterised, as a result of restricted rotation of their strapped bridges due to their high rotational barrier energies. Upon heating to 82 °C, they slowly equilibrate to a thermodynamic ratio of 64:36 in favour of the more stable S2 isomer. This atropisomerisation process was evidenced by 1H NMR spectroscopy and monitored by HPLC, from which high rotational energy barriers of 115.2 (Δ${G{{{\ne}\hfill \atop {\rm S2}\rightarrow {\rm S3}\hfill}}}$ ) and 116.9 kJ mol?1 (Δ${G{{{\ne}\hfill \atop {\rm S2}\rightarrow {\rm S3}\hfill}}}$ ) were deduced.  相似文献   

19.
The mechanism of the light‐induced spin crossover of the [Fe(bpy)3]2+ complex (bpy=2,2′‐bipyridine) has been studied by combining accurate electronic‐structure calculations and time‐dependent approaches to calculate intersystem‐crossing rates. We investigate how the initially excited metal‐to‐ligand charge transfer (MLCT) singlet state deactivates to the final metastable high‐spin state. Although ultrafast X‐ray free‐electron spectroscopy has established that the total timescale of this process is on the order of a few tenths of a picosecond, the details of the mechanisms still remain unclear. We determine all the intermediate electronic states along the pathway from low spin to high spin and give estimates for the deactivation times of the different stages. The calculations result in a total deactivation time on the same order of magnitude as the experimentally determined rate and indicate that the complex can reach the final high‐spin state by means of different deactivation channels. The optically populated excited singlet state rapidly decays to a triplet state with an Fe d6(${{\rm t}{{5\hfill \atop {\rm 2g}\hfill}}}$ ${{\rm e}{{1\hfill \atop {\rm g}\hfill}}}$ ) configuration either directly or by means of a triplet MLCT state. This triplet ligand‐field state could in principle decay directly to the final quintet state, but a much faster channel is provided by internal conversion to a lower‐lying triplet state and subsequent intersystem crossing to the high‐spin state. The deactivation rate to the low‐spin ground state is much smaller, which is in line with the large quantum yield reported for the process.  相似文献   

20.
The sodium–sulfur (NAS) battery is a candidate for energy storage and load leveling in power systems, by using the reversible reduction of elemental sulfur by sodium metal to give a liquid mixture of polysulfides (Na2Sn) at approximately 320 °C. We investigated a large number of reactions possibly occurring in such sodium polysulfide melts by using density functional calculations at the G3X(MP2)/B3LYP/6‐31+G(2df,p) level of theory including polarizable continuum model (PCM) corrections for two polarizable phases, to obtain geometric and, for the first time, thermodynamic data for the liquid sodium–sulfur system. Novel reaction sequences for the electrochemical reduction of elemental sulfur are proposed on the basis of their Gibbs reaction energies. We suggest that the primary reduction product of S8 is the radical anion ${{\rm S}{{{{\bullet}}- \hfill \atop 8\hfill}}}$ , which decomposes at the operating temperature of NAS batteries exergonically to the radicals ${{\rm S}{{{{\bullet}}- \hfill \atop 2\hfill}}}$ and ${{\rm S}{{{{\bullet}}- \hfill \atop 3\hfill}}}$ together with the neutral species S6 and S5, respectively. In addition, ${{\rm S}{{{{\bullet}}- \hfill \atop 8\hfill}}}$ is predicted to disproportionate exergonically to S8 and ${{\rm S}{{2- \hfill \atop 8\hfill}}}$ followed by the dissociation of the latter into two ${{\rm S}{{{{\bullet}}- \hfill \atop 4\hfill}}}$ radical ions. By recombination reactions of these radicals various polysulfide dianions can in principle be formed. However, polysulfide dianions larger than ${{\rm S}{{2- \hfill \atop 4\hfill}}}$ are thermally unstable at 320 °C and smaller dianions as well as radical monoanions dominate in Na2Sn (n=2–5) melts instead. The reverse reactions are predicted to take place when the NAS battery is charged. We show that ion pairs of the types ${{\rm NaS}{{{{\bullet}}\hfill \atop 2\hfill}}}$ , ${{\rm NaS}{{- \hfill \atop n\hfill}}}$ , and Na2Sn can be expected at least for n=2 and 3 in NAS batteries, but are unlikely in aqueous sodium polysulfide except at high concentrations. The structures of such radicals and anions with up to nine sulfur atoms are reported, because they are predicted to play a key role in the electrochemical reduction process. A large number of isomerization, disproportionation, and sulfurization reactions of polysulfide mono‐ and dianions have been investigated in the gas phase and in a polarizable continuum, and numerous reaction enthalpies as well as Gibbs energies are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号