共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper establishes the range of validity for a previously published three‐dimensional moving solid boundary condition for the lattice‐Boltzmann method. This method was reasonably formulated from a mass and momentum balance perspective, but was only verified for a small range of (primarily two‐dimensional) problems. One of the advantages of this boundary condition is that it offers resolution at the sub‐grid scale, allowing for accurate and stable calculation of the force and torque for solids which are moving through a lattice, even for small solid sizes relative to the computational grid size. We verify the boundary condition for creeping flows by comparison to analytical solutions that include both the force and the torque on fixed and moving spheres, and then follow this with comparisons to experimental and empirical results for both fixed as well moving spheres in inertial flows. Finally, we compare simulation results to numerical results of other investigators for the settling of an offset sphere and the drafting–kissing–tumbling of two sedimenting spheres. We found that an accurate calculation of the collision‐operator weighting used to obtain sub‐grid‐scale resolution was necessary in order to prevent spikes in the velocities, forces, and moments when solid objects cross‐computational cells. The wide range of comparisons collected and presented in this paper can be used to establish the validity of other numerical models, in addition to the one examined here. Published in 2007 by John Wiley & Sons, Ltd. 相似文献
2.
An improved Rhie–Chow interpolation scheme for the smoothed‐interface immersed boundary method 下载免费PDF全文
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
An improved immersed boundary method using a mass source/sink as well as momentum forcing is developed for simulating flows over or inside complex geometries. The present method is based on the Navier–Stokes solver adopting the fractional step method and a staggered Cartesian grid system. A more accurate formulation of the mass source/sink is derived by considering mass conservation of the virtual cells in the fluid crossed by the immersed boundary. Two flow problems (the decaying vortex problem and uniform flow past a circular cylinder) are used to validate the proposed formulation. The results indicate that the accuracy near the immersed boundary is improved by introducing the accurate mass source/sink. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
Constrained moving least‐squares immersed boundary method for fluid‐structure interaction analysis 下载免费PDF全文
A numerical method is presented for the analysis of interactions of inviscid and compressible flows with arbitrarily shaped stationary or moving rigid solids. The fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐order finite difference method based on the fifth‐order WENO scheme. A constrained moving least‐squares sharp interface method is proposed to enforce the Neumann‐type boundary conditions on the fluid‐solid interface by using a penalty term, while the Dirichlet boundary conditions are directly enforced. The solution of the fluid flow and the solid motion equations is advanced in time by staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark integration schemes. The stability and the robustness of the proposed method have been demonstrated by analyzing 5 challenging problems. For these problems, the numerical results have been found to agree well with their analytical and numerical solutions available in the literature. Effects of the support domain size and values assigned to the penalty parameter on the stability and the accuracy of the present method are also discussed. 相似文献
5.
In the lattice Boltzmann method (LBM), the mechanism of fluid–solid interaction can be effectively captured by appropriately enforcing the no‐slip conditions in shear direction, and bounce‐back of the non‐equilibrium distribution portion in the normal direction at fluid–solid interfaces. Among various solid–fluid interaction schemes being proposed for LBM in recent decades, two simple fluid–solid interaction methods—the momentum exchange algorithm (MEA) and the immersed boundary scheme (IBS)—were developed based on the above concept. In this paper, MEA and IBS are implemented in a D2Q9 LBGK system and applied to measure the wall correction factors of drag force upon a stationary circular particle midway in the Poiseuille channel flow at very low Reynolds number and drag coefficients at low to moderate Reynolds numbers. MEA and IBS are also employed to compare the fluid‐induced torque over the cylinder in the Taylor–Couette flow, and the steady velocity of a particle settling under the influence of gravity inside a tube. The above experiments show that IBS seems to be more accurate and less demanding on lattice resolution. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
A coupled immersed boundary‐lattice Boltzmann method with smoothed point interpolation method for fluid‐structure interaction problems 下载免费PDF全文
Shuangqiang Wang Yunan Cai Guiyong Zhang Xiaobo Quan Jianhua Lu Sheng Li 《国际流体数值方法杂志》2018,88(8):363-384
The immersed boundary‐lattice Boltzmann method has been verified to be an effective tool for fluid‐structure interaction simulation associated with thin and flexible bodies. The newly developed smoothed point interpolation method (S‐PIM) can handle the largely deformable solids owing to its softened model stiffness and insensitivity to mesh distortion. In this work, a novel coupled method has been proposed by combining the immersed boundary‐lattice Boltzmann method with the S‐PIM for fluid‐structure interaction problems with large‐displacement solids. The proposed method preserves the simplicity of the lattice Boltzmann method for fluid solvers, utilizes the S‐PIM to establish the realistic constitutive laws for nonlinear solids, and avoids mesh regeneration based on the frame of the immersed boundary method. Both two‐ and three‐dimensional numerical examples have been carried out to validate the accuracy, convergence, and stability of the proposed method in consideration of comparative results with referenced solutions. 相似文献
7.
In this study, a method is developed to simulate the interaction between free surface flows and moving or deforming boundaries using the flux‐difference splitting scheme on the hybrid Cartesian/immersed boundary method. At each physical time step, the boundary is defined by an unstructured triangular surface grid. Immersed boundary (IB) nodes are distributed inside an instantaneous fluid domain based on edges crossing the boundary. At an IB node, dependent variables are reconstructed along the local normal line to the boundary. Inviscid fluxes are computed using Roe's flux‐difference splitting scheme for immiscible and incompressible fluids. The free surface is considered as a contact discontinuity in the density field. The motion of free surface is captured without any additional treatment along the fluid interface. The developed code is validated by comparisons with other experimental and computational results for a piston‐type wave maker, impulsive motion of a submerged circular cylinder, flow around a submerged hydrofoil, and Rayleigh–Taylor instability. The developed code is applied to simulate wave generation due to a continuously deforming bed beneath the free surface. The violent motion of a free surface caused by sloshing in a spherical tank is simulated. In this case, the free surface undergoes breakup and reconnection. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
An immersed boundary method wall model for high‐Reynolds‐number channel flow over complex topography
William Anderson 《国际流体数值方法杂志》2013,71(12):1588-1608
High‐Reynolds‐number channel flows regularly encounter topographies composed of multiple length scales and that protrude into the boundary layer. Physically, the presence of immersed obstacles leads to increased velocity gradients, turbulence production, and manifestation of wakes. Considerable challenges are associated with numerically describing the presence of obstacles in channel flows. Common approaches include generation of a computational mesh that is uniquely designed for the flow and obstacle, the immersed boundary method, and terrain‐following coordinates. There are challenges and limitations associated with each of these techniques. Specification of boundary conditions representing the perimeter of solid obstacles is a primary challenge of the immersed boundary method. In this document, a simplistic canopy stress‐like wall model is used to impose boundary conditions. The model isolates aerodynamically relevant local frontal areas through evaluation of the gradient of the topographic height field. The gradient of the height field describes both the surface‐normal direction and the frontal area, making it ideal for detecting areas on which the flow impinges. The model is tested in numerical simulations of turbulent half‐channel flow over topographies with different obstacles affixed–right prisms, rectangular prisms, ellipsoidal mounds, and sinusoids. In all cases, the performance is strong relative to datasets presented in the literature. Results are finally presented for numerical simulation of flow over complex synthetic fractal‐like topography and a synthetic city. These results show interesting trends in how the turbulent multiscale flow field responds to multiscale topography. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
根据投影浸入边界法分步投影求解的特点,同时针对压力泊松方程离散后的大型稀疏线性方程组是非奇异非对称的特点,结合开源函数库UMFPACK,在传递线性方程组的系数矩阵和右端向量时,采用函数库Eigen将系数矩阵的数据结构改写优化,大大降低了存储空间,实现对高维大型稀疏线性方程组的快速求解,同时求解保持良好的稳定性。本文首先利用一具有解析解的数值算例验证了求解泊松方程数值方法的准确性和网格依赖性,进而利用VC++编写投影浸入边界法的数值计算程序,以单圆柱绕流为基准数值算例,通过与其他文献和实验结果的对比,验证了投影浸入边界法数值计算结果的可靠性,并进一步分析了不同雷诺数下圆柱绕流的流场结构特征和尾涡结构的动态演化过程。 相似文献
10.
In this article, we propose a simple area‐preserving correction scheme for two‐phase immiscible incompressible flows with an immersed boundary method (IBM). The IBM was originally developed to model blood flow in the heart and has been widely applied to biofluid dynamics problems with complex geometries and immersed elastic membranes. The main idea of the IBM is to use a regular Eulerian computational grid for the fluid mechanics along with a Lagrangian representation of the immersed boundary. Using the discrete Dirac delta function and the indicator function, we can include the surface tension force, variable viscosity and mass density, and gravitational force effects. The principal advantage of the IBM for two‐phase fluid flows is its inherent accuracy due in part to its ability to use a large number of interfacial marker points on the interface. However, because the interface between two fluids is moved in a discrete manner, this can result in a lack of volume conservation. The idea of an area preserving correction scheme is to correct the interface location normally to the interface so that the area remains constant. Various numerical experiments are presented to illustrate the efficiency and accuracy of the proposed conservative IBM for two‐phase fluid flows. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
Chao Yan Gui-Xiang Cui Chunxiao Xu Zhao-Shun Zhang 《International Journal of Computational Fluid Dynamics》2015,29(1):12-25
An efficient ghost-cell immersed boundary (IB) method is proposed for large eddy simulations of three-dimensional incompressible flow in complex geometries. In the framework of finite volume method, the Navier–Stokes equations are integrated using an explicit time advancement scheme on a collocated mesh. Since the IB method is known to generate an unphysical velocity field inside the IB that violates the mass conservation of the cells near the IB, a new IB treatment is devised to eliminate the unphysical velocity generated near the IB and to improve the pressure distribution on the body surface. To validate the proposed method, both laminar and turbulent flow cases are presented. In particular, large eddy simulations were performed to simulate the turbulent flows over a circular cylinder and a sphere at subcritical Reynolds numbers. The computed results show good agreements with the published numerical and experimental data. 相似文献
12.
This paper proposes a new immersed boundary (IB) method for solving fluid flow problems in the presence of rigid objects which are not represented by the mesh. Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Important benefit would be reached if we are able to solve the flow without the need of generating a mesh that fits the shape of the immersed objects. This work presents a finite element IB method using a discretization covering the entire domain of interest, including the volume occupied by immersed objects, and which produces solutions of the flow satisfying accurately the boundary conditions at the surface of immersed bodies. In other words the finite element solution represents accurately the presence of immersed bodies while the mesh does not. This is done by including additional degrees of freedom on interface cut elements which are then eliminated at element level. The boundary of immersed objects is defined using a level set function. Solutions are shown for various flow problems and the accuracy of the present approach is measured with respect to solutions obtained on body‐fitted meshes. Copyright © 2010 Crown in the right of Canada. 相似文献
13.
An immersed smoothed point interpolation method (IS‐PIM) for fluid‐structure interaction problems 下载免费PDF全文
An immersed smoothed point interpolation method using 3‐node triangular background cells is proposed to solve 2D fluid‐structure interaction problems for solids with large deformation/displacement placed in incompressible viscous fluid. In the framework of immersed‐type method, the governing equations can be decomposed into 3 parts on the basis of the fictitious fluid assumption. The incompressible Navier‐Stokes equations are solved using the semi‐implicit characteristic‐based split scheme, and solids are simulated using the newly developed edge‐based smoothed point interpolation method. The fictitious fluid domain can be used to calculate the coupling force. The numerical results show that immersed smoothed point interpolation method can avoid remeshing for moving solid based on immersed operation and simulate the contact phenomenon without an additional treatment between the solid and the fluid boundary. The influence from information transfer between solid domain and fluid domain on fluid‐structure interaction problems has been investigated. The numerical results show that the proposed interpolation schemes will generally improve the accuracy for simulating both fluid flows and solid structures. 相似文献
14.
A sharp‐interface immersed boundary framework for simulations of high‐speed inviscid compressible flows 下载免费PDF全文
Shuvayan Brahmachary Ganesh Natarajan Vinayak Kulkarni Niranjan Sahoo 《国际流体数值方法杂志》2018,86(12):770-791
A new finite‐volume flow solver based on the hybrid Cartesian immersed boundary (IB) framework is developed for the solution of high‐speed inviscid compressible flows. The IB method adopts a sharp‐interface approach, wherein the boundary conditions are enforced on the body geometry itself. A key component of the present solver is a novel reconstruction approach, in conjunction with inverse distance weighting, to compute the solutions in the vicinity of the solid‐fluid interface. We show that proposed reconstruction leads to second‐order spatial accuracy while also ensuring that the discrete conservation errors diminish linearly with grid refinement. Investigations of supersonic and hypersonic inviscid flows over different geometries are carried out for an extensive validation of the proposed flow solver. Studies on cylinder lift‐off and shape optimisation in supersonic flows further demonstrate the efficacy of the flow solver for computations with moving and shape‐changing geometries. These studies conclusively highlight the capability of the proposed IB methodology as a promising alternative for robust and accurate computations of compressible fluid flows on nonconformal Cartesian meshes. 相似文献
15.
We present a compact finite differences method for the calculation of two‐dimensional viscous flows in biological fluid dynamics applications. This is achieved by using body‐forces that allow for the imposition of boundary conditions in an immersed moving boundary that does not coincide with the computational grid. The unsteady, incompressible Navier–Stokes equations are solved in a Cartesian staggered grid with fourth‐order Runge–Kutta temporal discretization and fourth‐order compact schemes for spatial discretization, used to achieve highly accurate calculations. Special attention is given to the interpolation schemes on the boundary of the immersed body. The accuracy of the immersed boundary solver is verified through grid convergence studies. Validation of the method is done by comparison with reference experimental results. In order to demonstrate the application of the method, 2D small insect hovering flight is calculated and compared with available experimental and computational results. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies. 相似文献
17.
This study presents an improved ghost‐cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work, ghost cells are mirrored through the boundary described using a level‐set method to farther image points, incorporating a higher‐order extra/interpolation scheme for the ghost‐cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost‐cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl–Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward‐facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost‐cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut‐cell method demonstrate that the improved ghost‐cell method is almost equally accurate with better efficiency for boundary representation in high‐fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
19.
Numerical modeling of wave interactions with coastal structures by a constrained interpolation profile/immersed boundary method 下载免费PDF全文
A high‐order difference method based multiphase model is proposed to simulate nonlinear interactions between water wave and submerged coastal structures. The model is based on the Navier–Stokes equations using a constrained interpolation profile (CIP) method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of wave–structure interactions. A more accurate interface capturing scheme, the volume of fluid/weighed line interface calculation (VOF/WLIC) scheme, is adopted as the interface capturing method. A series of computations are performed to verify the application of the model for simulations of fluid interaction with various structures. These problems include flow over a fixed cylinder, water entry of a circular cylinder and solitary waves passing various submerged coastal structures. Computations are compared with the available analytical, experimental and other numerical results and good agreement is obtained. The results of this study demonstrate the accuracy and applications of the proposed model to simulate the nonlinear flow phenomena and capture the complex free surface flow. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow. 相似文献