首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
《中国化学》2018,36(9):845-850
The arylthio‐substituted tetrathiafulvalenes (Ar‐S‐TTFs) are electron donors having three reversible states, neutral, cation radical, and dication. The charge‐transfer (CT) between Ar‐S‐TTFs ( TTF1 — TTF3 ) and iodine (I2) is reported herein. TTF1 — TTF3 show the CT with I2 in the CH2Cl2 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1 — TTF3 with I2, the charged states of Ar‐S‐TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2 — TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1‐D chain of V‐shaped (I5), and 2‐D and 3‐D iodine networks composed of I2 and (I3).  相似文献   

2.
In the title heteroleptic cuprous complex, (acetonitrile‐κN)({2‐[2‐(diphenylphosphanyl)phenoxy]phenyl}diphenylphosphane‐κ2P,P′)[2‐(pyridin‐4‐yl‐κN)‐1,3‐benzoxazole]copper(I) hexafluoridophosphate, [Cu(C36H28OP2)(CH3CN)(C12H8N2O)]PF6, conventionally abbreviated [Cu(POP)(CH3CN)(4‐PBO)]PF6, where POP is the diphosphane ligand {2‐[2‐(diphenylphosphanyl)phenoxy]phenyl}diphenylphosphane and 4‐PBO is the N‐containing ligand 2‐(pyridin‐4‐yl)‐1,3‐benzoxazole, the asymmetric unit consists of a hexafluoridophosphate anion and a whole mononuclear cation, where the CuI centre is coordinated by two P atoms from the POP ligand, by one N atom from the 4‐PBO ligand and by the N atom of the coordinated acetonitrile molecule, giving rise to a CuP2N2 distorted tetrahedral coordination geometry. The electronic absorption, photoluminescence and thermal stability properties of this complex have been studied on as‐synthesized samples, which had previously been examined by powder X‐ray diffraction. A yellow emission signal is attributed to an excited state arising from metal‐to‐ligand charge transfer (MLCT).  相似文献   

3.
Cu4P4X4Fe2 (X = Cl, Br) cages are formed upon reactions of octaethyl‐1,1′‐diphosphaferrocene (odpf) with the respective CuI halide in CH2Cl2/CH3CN solvent mixtures. These cages have adamantoid Cu4X4P2 cores with two planar anelated CuP2Fe rings as the flaps. Both complexes 1 and 2 feature tri‐ and tetracoordinate CuI ions and an additional acetonitrile solvent molecule in the crystal. In 1 , the solvent molecule is coordinated to one copper ion whereas it remains uncoordinated in 2 . The tricoordinate CuI ions show a slight pyramidalization at the metal atom and somewhat short contacts to the other tricoordinate CuI ion in 2 or the Cu3‐triangle in 1 . NMR spectroscopy revealed easy decoordination of the acetonitrile ligand from 1 and a dynamic “windshield‐wiper”‐type process that interconverts the differently coordinated phospholide rings of each odpf ligand and the tri‐ and tetracoordinate CuI ions.  相似文献   

4.
Colourless, lath‐shaped single crystals of Cs2[B12I12] · 2 CH3CN (monoclinic, C2/m; a = 1550.3(2), b = 1273.2(1), c = 1051.5(1) pm, β = 120.97(1)°; Z = 2) are obtained by the reaction of Cs2[B12H12] with an excess of I2 and ICl (molar ratio: 1 : 2) in methylene iodide (CH2I2) at 180 °C (8 h) and recrystallization of the crude product from acetonitrile (CH3CN). The crystal structure contains quasi‐icosahedral [B12I12]2– anions (d(B–B) = 176–182 pm, d(B–I) = 211–218 pm) which arrange in a cubic closest‐packed fashion. All octahedral interstices are filled with centrosymmetric dimer‐cations {[Cs(N≡C–CH3)]2}2+ containing a diamond‐shaped four‐membered (Cs–N–Cs–N) ring of Cs+ cations and nitrogen atoms of the solvating acetonitrile molecules (d(Cs–N) = 321 pm, 2 ×). The cesium cations themselves actually reside in the distorted tetrahedral voids of the cubic [B12I12]2– packing (d(Cs–I) = 402–461 pm, 10 ×) if one ignores the solvent particles.  相似文献   

5.
Fullerite C60 with intercalated CH2F2 (Freon-32) was prepared for the first time. The sample was studied by elemental analysis, X-ray powder diffraction, mass spectrometry, and IR spectroscopy. The composition of the sample was found to be (CH2F2)C60. The sample had a face-centered cubic lattice with the lattice parameter (1.4284 nm) much larger than that of pure fullerite (1.416 nm). The gas released from the sample during heating in a vacuum to 450°C largely consisted of initial Freon (mass spectrometry data); no Freon destruction products were observed at this temperature. The C-F stretching vibration frequency (1058 cm?1) was shifted in (CH2F2)C60 by 30 cm?1 toward lower wave numbers compared with the gas phase. The absorption bands at 1182 and 1428 cm?1 (IR active modes (F 1u ) of high-symmetry (I h ) C60 molecules) did not change their positions in the intercalate.  相似文献   

6.
Metal–metal bonding interactions have been employed as an efficient strategy to generate a number of unique gold(I) metallo‐macrocycles with fascinating functions. The self‐assembly, crystal structure and emission property of novel nest‐like tetramer 14 , namely, {[Au4(μ‐dppm)2(μ‐dctp2?)](BF4)2}4 ? (CH3CN)2 (dppm=bis(diphenylphosphino)methane, dctp2?=N,N′‐bis(dicarbodithioate)‐2,11‐diaza[3.3]paracyclophane) is reported. The complex has been characterized by single‐crystal X‐ray diffraction analysis, 1H NMR spectroscopy, 13C NMR spectroscopy, and CSI‐MS spectrometry. The aggregate demonstrates the sixteen gold(I) atoms are arranged in a ring with a circumference of 50.011(68) Å generated by AuI???AuI attractions. UV/visible and luminescence spectroscopy revealed that this AuI???AuI bonded metallo‐macrocycle exhibited yellow phosphorescence.  相似文献   

7.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

8.
Bis(trimethylammonium) alkane diiodides dynamically encapsulate dicarboxylic acids through intermolecular hydrogen bonds between the I? anions of the hosts and the carboxylic OH groups of the guests. A selective recognition is realized when the size of the I????HOOC(CH2/CF2)nCOOH???I? superanion matches the dication alkyl chain length. Dynamic recognition is also demonstrated in solution, where the presence of the size‐matching organic salt boosts the acid solubility profile, thus allowing efficient mixture separation.  相似文献   

9.
Materials exhibiting excitation wavelength‐dependent photoluminescence (Ex‐De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti‐counterfeiting. Two multifunctional, chiral [Au(NHC)2][Au(CN)2] (NHC=(4R,5R)/(4S,5S)‐1,3‐dimethyl‐4,5‐diphenyl‐4,5‐dihydro‐imidazolin‐2‐ylidene) complex double salts display Ex‐De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI???AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI???AuI distances. An anti‐counterfeiting application using these two salts is demonstrated.  相似文献   

10.
Photoinduced electron transfer was studied in self‐assembled donor–acceptor dyads, formed by axial coordination of pyridine appended with naphthalenediimide (NDI) to zinc naphthalocyanine (ZnNc). The NDI‐py:ZnNc ( 1 ) and NDI(CH2)2‐py:ZnNc ( 2 ) self‐assembled dyads absorb light over a wide region of the UV/Vis/near infrared (NIR) spectrum. The formation constants of the dyads 1 and 2 in toluene were found to be 2.5×104 and 2.2×104 M ?1, respectively, from the steady‐state absorption and emission measurements, suggesting moderately stable complex formation. Fluorescence quenching was observed upon the coordination of the pyridine‐appended NDI to ZnNc in toluene. The energy‐level diagram derived from electrochemical and optical data suggests that exergonic charge separation through the singlet state of ZnNc (1ZnNc*) provides the main quenching pathway. Clear evidence for charge separation from the singlet state of ZnNc to NDI was provided by femtosecond laser photolysis measurements of the characteristic absorption bands of the ZnNc radical cation in the NIR region at 960 nm and the NDI radical anion in the visible region. The rates of charge‐separation of 1 and 2 were found to be 2.2×1010 and 4.4×109 s?1, respectively, indicating fast and efficient charge separation (CS). The rates of charge recombination (CR) and the lifetimes of the charge‐separated states were found to be 8.50×108 s?1 (1.2 ns) for 1 and 1.90×108 s?1 (5.3 ns) for 2 . These values indicate that the rates of the CS and CR processes decrease as the length of the spacer increases. Their absorption over a wide portion of the solar spectrum and the high ratio of the CS/CR rates suggests that the self‐assembled NDI‐py:ZnNc and NDI(CH2)2‐py:ZnNc dyads are useful as photosynthetic models.  相似文献   

11.
[Tetrakis(acetonitrile)‐dibromo‐nickel(II)]‐di‐acetonitrile was obtained from a solution of nickel(II) dibromide in acetonitrile at 258 K. The crystal structure [monoclinic, P21/n (no.14), a = 1005.5(5), b = 831.3(5) , c = 1131.7(5) pm, β = 106.263(5)°, V = 908.1(8)·106 pm3, Z = 2, R1 for 1580 reflections with I0>2σ(I0): 0.0505] contains sixfold coordinated NiII atoms. Two trans coordinating bromide anions and four equatorial acetonitrile molecules form an elongated octahedron around the central NiII atom. [Ni(CH3CN)4Br2] octahedra are connected via hydrogen bonds to neighboring octahedra as well as to solvate acetonitrile molecules.  相似文献   

12.
The reactions of 4,5,6,7‐tetrathiocino‐[1,2‐b:3,4‐b′]‐1,3,8,10‐tetrasubstituted‐diimidazolyl‐2,9‐dithiones (R2,R′2‐todit; 1 : R=R′=Et; 2 : R=R′=Ph; 3 : R=Et, R′=Ph) with Br2 exclusively afforded 1:1 and 1:2 “T‐shaped” adducts, as established by FT‐Raman spectroscopy and single‐crystal X‐ray diffraction in the case of complex 1? 2 Br2. On the other hand, the reactions of compounds 1 – 3 with molecular I2 provided charge‐transfer (CT) “spoke” adducts, among which the solvated species 3? 2 I2 ? (1?x)I2 ? x CH2Cl2 (x=0.94) and ( 3 )2 ? 7 I2 ? x CH2Cl2, (x=0.66) were structurally characterized. The nature of all of the reaction products was elucidated based on elemental analysis and FT‐Raman spectroscopy and supported by theoretical calculations at the DFT level.  相似文献   

13.
A compact and planar donor–acceptor molecule 1 comprising tetrathiafulvalene (TTF) and benzothiadiazole (BTD) units has been synthesised and experimentally characterised by structural, optical, and electrochemical methods. Solution‐processed and thermally evaporated thin films of 1 have also been explored as active materials in organic field‐effect transistors (OFETs). For these devices, hole field‐effect mobilities of μFE=(1.3±0.5)×10?3 and (2.7±0.4)×10?3 cm2 V s?1 were determined for the solution‐processed and thermally evaporated thin films, respectively. An intense intramolecular charge‐transfer (ICT) transition at around 495 nm dominates the optical absorption spectrum of the neutral dyad, which also shows a weak emission from its ICT state. The iodine‐induced oxidation of 1 leads to a partially oxidised crystalline charge‐transfer (CT) salt {( 1 )2I3}, and eventually also to a fully oxidised compound { 1 I3} ? 1/2I2. Single crystals of the former CT compound, exhibiting a highly symmetrical crystal structure, reveal a fairly good room temperature electrical conductivity of the order of 2 S cm?1. The one‐dimensional spin system bears compactly bonded BTD acceptors (spatial localisation of the LUMO) along its ridge.  相似文献   

14.
Simultaneous speciation of mixed standard solutions of triphenyltin halides (triphenyltin chloride, bromide, iodide) and pseudohalide (triphenyltin isothiocyanate) has been achieved with reversed‐phase high‐performance liquid chromatography on a Waters Spherisorb S5W ODS‐2 (octadecyl‐silica) column. An isocratic mixture of 95:5 (v/v) acetonitrile:water was used as the mobile phase at a flow rate of 1 ml min?1. A series of selected triphenyltin carboxylates, Ph3SnOCOZ, where Z = Me, Ph, CH:CHPh, CH:NOMe, CH2SC5H4N and CH2SC(S)NMe2, was also similarly analysed using this system with two separate isocratic elutions using 100% acetonitrile and 96:4 (v/v) acetonitrile:water as the mobile phase. UV detection was done at 254 nm and the total run time for each analysis was less than 3 min. The detection limits for all the phenyltin(IV) compounds were in the range 0.01–0.03 ppm. Spiked water samples containing the triphenyltin carboxylates could also be simultaneously analysed by the above method without the need for any prior derivatization, following extraction with hexane. Pretreatment of the aqueous sample with NaCl/HCl and of the organic phase with hexamethylphosphoramide enabled recoveries of about 80% of the triphenyltins. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Three tricarbocyanine dyes (IR‐897, IR‐877, and IR‐925) with different thiourea substituents that function as dosimeter units through specific Hg2+‐induced desulfurization have been demonstrated in a fast indicator paper for Hg2+ and MeHg+ ions. In comparison with available Hg2+‐selective chemodosimeters, IR‐897 and IR‐877 show several advantages, such as convenient synthesis, very long wavelengths falling in the near‐infrared (NIR) region (650–900 nm) with high molar extinction coefficients, a ratiometric response, and quite low disturbance with Ag+ and Cu2+ ions. They exhibit large redshifts, which result in a clear color change from deep blue to pea green that can be easily monitored by the naked eye for a convenient indicator paper. In emission spectra, they display a characteristic turn‐off mode at 780 nm and turn‐on mode at 830 nm with titration of Hg2+ ions. Remarkably, the signal/noise (S/N) ratio with other thiophilic metal ions (Ag+ and Cu2+) is greatly enhanced with ratiometric measurement of two channels: excitation spectra mode (I810 nm/I670 nm, monitored at 830 nm) and emission spectra mode (I830 nm/I780 nm, isosbestic absorption point at 730 nm as excitation). The distinct response is dependent upon the electron‐donating effect of the thiourea substituents; that is, the stronger the electron‐donating capability of the thiourea substituents, the faster the Hg2+‐promoted cyclization. Additionally, experiments with living SW1116 cells show that these three tricarbocyanine dyes with low toxicity can exhibit special characteristics that are favorable for visualizing intracellular Hg2+ and MeHg+ ions in biological systems, including excellent membrane permeability, minimal interfering absorption and fluorescence from biological samples, low scattering, and deep penetration into tissues.  相似文献   

16.
The UV absorption spectrum and kinetics of CH2I and CH2IO2 radicals have been studied in the gasphase at 295 K using a pulse radiolysis UV absorption spectroscopic technique. UV absorption spectra of CH2I and CH2IO2 radicals were quantified in the range 220–400 nm. The spectrum of CH2I has absorption maxima at 280 nm and 337.5 nm. The absorption cross-section for the CH2I radicals at 337.5 nm was (4.1 ± 0.9) × 10?18 cm2 molecule?1. The UV spectrum of CH2IO2 radicals is broad. The absorption cross-section at 370 nm was (2.1 ± 0.5) × 10?18 cm2 molecule?1. The rate constant for the self reaction of CH2I radicals, k = 4 × 10?11 cm3 molecule?1 s?1 at 1000 mbar total pressure of SF6, was derived by kinetic modelling of experimental absorbance transients. The observed self-reaction rate constant for CH2IO2 radicals was estimated also by modelling to k = 9 × 10?11 cm3 molecule?1 s?1. As part of this work a rate constant of (2.0 ± 0.3) × 10?10 cm3 molecule?1 s?1 was measured for the reaction of F atoms with CH3I. The branching ratios of this reaction for abstraction of an I atom and a H atom were determined to (64 ± 6)% and (36 ± 6)%, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Visible‐light‐driven H2 evolution based on Dye/TiO2/Pt hybrid photocatalysts was investigated for a series of (E)‐3‐(5′‐{4‐[bis(4‐R1‐phenyl)amino]phenyl}‐4,4′‐(R2)2‐2,2′‐bithiophen‐5‐yl)‐2‐cyanoacrylic acid dyes. Efficiencies of hydrogen evolution from aqueous suspensions in the presence of ethylenediaminetetraacetic acid as electron donor under illumination at λ>420 nm were found to considerably depend on the hydrophilic character of R1, varying in the order MOD (R1=CH3OCH2, R2=H)≈ MO4D (R1=R2=CH3OCH2)> HD (R1=R2=H)> PD (R1=C3H7, R2=H). In the case of MOD /TiO2/Pt, the apparent quantum yield for photocatalyzed H2 generation at 436 nm was 0.27±0.03. Transient absorption measurements for MOD ‐ or PD ‐grafted transparent films of TiO2 nanoparticles dipped into water at pH 3 commonly revealed ultrafast formation (<100 fs) of the dye radical cation (Dye.+) followed by multicomponent decays, which involve minor fast decays (<5 ps) almost independent of R1 and major slower decays with significant differences between the two samples: 1) the early decay of the major components for MOD is about 2.5 times slower than that for PD and 2) a redshift of the spectrum occurred for MOD with a time constant of 17 ps, but not for PD . The substituent effects on H2 generation as well as on transient behavior have been discussed in terms substituent‐dependent charge recombination (CR) of Dye.+ with electrons in bulk, inner‐trap, and/or interstitial‐trap states, arising from different solvent reorganization.  相似文献   

18.
Supramolecular ensembles adopting ring‐in‐ring structures are less developed compared with catenanes featuring interlocked rings. While catenanes with inter‐ring closed‐shell metallophilic interactions, such as d10–d10 AuI–AuI interactions, have been well‐documented, the ring‐in‐ring complexes featuring such metallophilic interactions remain underdeveloped. Herein is described an unprecedented ring‐in‐ring structure of a AuI‐thiolate Au12 cluster formed by recrystallization of a AuI‐thiolate Au10 [2]catenane from alkane solvents such as hexane, with use of a bulky dibutylfluorene‐2‐thiolate ligand. The ring‐in‐ring AuI‐thiolate Au12 cluster features inter‐ring AuI–AuI interactions and underwent cluster core change to form the thermodynamically more stable Au10 [2]catenane structure upon dissolving in, or recrystallization from, other solvents such as CH2Cl2, CHCl3, and CH2Cl2/MeCN. The cluster‐to‐cluster transformation process was monitored by 1H NMR and ESI‐MS measurements. Density functional theory (DFT) calculations were performed to provide insight into the mechanism of the “ring‐in‐ring? [2]catenane” interconversions.  相似文献   

19.
20.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号