首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations of hydroxyl radical in water are carried out by use of a classical simple point charge extended (SPC/E) water model and a similar point charge model for hydroxyl radical. Structural and dynamical properties are studied along the coexistence curve of SPC/E water at 298, 373, 473, 573, and 633 K and above its critical point at 683, 733, 783, and 833 K with density fixed at 0.3 g/cm3. Dramatic changes in the diffusion dynamics of water and hydroxyl radical near the critical point are related to the reorganization of the three-dimensional structure of water around hydroxyl radical, as revealed by the study of the spatial distribution functions. This study helps us understand the kinetics of oxidation reactions in high-temperature water.  相似文献   

2.
The effect of halogen substitution on intermolecular hydrogen-bonding in ethanol is studied. Specifically, Fourier-transform infrared (FTIR) spectra of ethanol, 2,2,2-trifluoroethanol (TFE), and 2,2,2-trichloroethanol dissolved in carbon tetrachloride are reported as a function of temperature and concentration. The spectral intensities corresponding to monomer, dimer, and multimer formation are used to determine the effect of halogen substitution on intermolecular hydrogen-bonding. The enthalpy for dimerization was found to evolve from -4.2+/-0.3 kcal/mol in ethanol to -6.8+/-1.0 kcal/mol in TFE. An opposite trend was observed for multimer formation with enthalpies of -3.7+/-0.5 in ethanol and -2.1+/-1.4 kcal/mol in TFE. The majority of this evolution is assigned to the ability of ethanols to form intramolecular hydrogen bonds involving the hydoxyl proton and the halogen substituents.  相似文献   

3.
Reaction rate constants of crown ethers (12-crown-4, 15-crown-5, 18-crown-6) and their analogs 1,4-dioxane (6C2) with some important oxidative radicals, hydroxyl radical (OH), sulfate radical (SO4?) and nitrate radical (NO3), were determined in various aqueous solutions by pulse radiolysis and laser photolysis techniques. The reaction rate constants for 6C2 and crown ethers with OH and SO4? increase with the number of hydrogen atoms in the ethers, indicating that the hydrogen-atom abstraction is a dominant reaction between crown ethers and these two radicals. The presence of cations in solution has negligible effect on the rate constants of crown ether towards OH and SO4?. However, for the NO3, the rate constants are not proportional to the number of hydrogen atoms in ethers, and 12-crown-4 (12C4) is the most reactive compared with other crown ethers. Except 12C4 and 6C2, the cations in the aqueous solution affect the reactivities of 15-crown-5 (15C5) and 18-crown-6 (18C6). The cations with high binding stability for crown ether would improve the reactivity of 15C5. For the studied crown ethers, the reaction rate constants of these oxidative radicals have the order OH>SO4?>NO3. Furthermore, the formation of radicals after the reaction of crown ethers with sulfate radical could be observed in the range of 260–280 nm using laser photolysis and pulse radiolysis. This is the first report on the kinetic behavior of crown ethers with NO3, and it would be helpful for the understanding of stability of crown ethers in the processing of spent nuclear fuel.  相似文献   

4.
Gaseous mixtures containing hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC) were pulse radiolized and the kinetics of the radical (OH, RF) reactions has been studied. The obtained rate coefficients are also given.  相似文献   

5.
Thermochemistry of hydration of the aliphatic and aromatic amines was studied. Enthalpies of solution at infinite dilution of amines in water were measured using the method of solution calorimetry. A procedure of taking into account the ionization and non-specific hydration of amines in aqueous media was carried out. A method for estimating the enthalpy of hydrogen bonding of amines in aqueous solutions was suggested on the basis of a comparative analysis of the solvation enthalpies of the solutes in water and methanol. The efficiency of this method is confirmed by evaluating the hydrophobic effect enthalpy.  相似文献   

6.
Cyclic nitroxides (>NO*) are stable radicals of diverse size, charge, lipophilicility, and cell permeability, which provide protection against oxidative stress via various mechanisms including SOD-mimic activity, oxidation of reduced transition metals and detoxification of oxygen- and nitrogen-centered radicals. However, there is no agreement regarding the reaction of nitroxides with peroxyl radicals, and many controversies in the literature exist. The question of whether nitroxides can protect by scavenging peroxyl radicals is important because peroxyl radicals are formed in biological systems. To further elucidate the mechanism(s) underlying the antioxidative effects of nitroxides, we studied by pulse radiolysis the reaction kinetics of piperidine, pyrrolidine, and oxazolidine nitroxides with several alkyl peroxyl radicals. It is demonstrated that nitroxides mainly reduce alkyl peroxyl radicals forming the respective oxoammonium cations (>N+=O). The most efficient scavenger of peroxyl radicals is 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), which has the lowest oxidation potential among the nitroxides tested in the present study. The rate constants of peroxyl reduction are in the order CH2(OH)OO*>CH3OO*>t-BuOO*, which correlate with the oxidation potential of these peroxyl radicals. The rate constants for TPO vary between 2.8x10(7) and 1.0x10(8) M-1 s-1 and for 3-carbamoylproxyl (3-CP) between 8.1x10(5) and 9.0x10(6) M-1 s-1. The efficacy of protection of nitroxides against inactivation of glucose oxidase caused by peroxyl radicals was studied. The results demonstrate a clear correlation between the kinetic features of the nitroxides and their ability to inhibit biological damage inflicted by peroxyl radicals.  相似文献   

7.
A quantitative comparison of ab initio calculated rate coefficients using five computational methods and five different approaches of treating hindered internal rotation and tunneling with experimental values of rate coefficients for nine carbon-centered radical additions/beta scissions at 300, 600, and 1000 K is performed. The high-accuracy compound methods, CBS-QB3 and G3B3, and the density functionals, MPW1PW91, BB1K, and BMK, have been evaluated using the following approaches: (i) the harmonic oscillator approximation; (ii) the hindered internal rotor approximation for the internal rotation about the forming/breaking bond in the transition state and product; and the hindered internal rotation approximation combined with (iii) Wigner, (iv) Skodje and Truhlar, and (v) Eckart zero-curvature tunneling corrections. The density functional theory (DFT) based values for beta-scission rate coefficients deviate significantly from the experimental ones at 300 K, and the DFT methods do not accurately predict the equilibrium coefficient. The hindered rotor approximation offers a significant improvement in the agreement with experimental rate coefficients as compared to the harmonic oscillator treatment, especially at higher temperatures. Tunneling correction factors are smaller than 1.40 at 300 K and 1.03 at 1000 K. For both the CBS-QB3 method, including the hindered rotor treatment but excluding tunneling corrections, and the G3B3 method, including hindered rotor and Eckart tunneling corrections, a mean factor of deviation with experimentally observed values of 3 is found.  相似文献   

8.
9.
In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm confirm that this is the most likely site for hydrogen abstraction by hydroxyl radical.  相似文献   

10.
The reactivities of mono- and dihalocarbene anions (CHCl, CHBr, CF2, CCl2, and CBrCl) were studied using a tandem flowing afterglow-selected ion flow tube instrument. Reaction rate constants and product branching ratios are reported for the reactions of these carbene anions with six neutral reagents (CS2, COS, CO2, O2, CO, and N2O). These anions were found to demonstrate diverse chemistry as illustrated by formation of multiple product ions and by the observed reaction trends. The reactions of CHCl and CHBr occur with similar efficiencies and reactivity patterns. Substitution of a Cl atom for an H atom to form CCl2 and CBrCl decreases the rate constants; these two anions react with similar efficiencies and reactivity trends. The CF2 anion displays remarkably different reactivity; these differences are discussed in terms of its lower electron binding energy and the effect of the electronegative fluorine substituents. The results presented here are compared to the reactivity of the CH2 anion, which has previously been reported.  相似文献   

11.
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed.  相似文献   

12.
Absolute rate constants were measured for the reaction CN + CH2O over the temperature range 297–673 K and CN + 1,3,5-trioxane over the range of 297–600 K by the laser photolysis/laser induced fluorescence technique. The rate constants for these reactions can be effectively represented, in units of cm3/s, by: k(CH2O) = 2.82 × 10?19 T2.72 exp(718/T), and k(1,3,5-trioxane) = 1.39 × 10?23 T4.26 exp(1333/T), respectively. Transition state theory calculations were able to fit the temperature dependence of the CN + CH2O rates relatively well. We attempted to correlate the CN reaction rate with CH2O and other molecules which occur through simple abstraction with the corresponding OH reaction rates, yielding only a qualitative linear correlation for a majority of the processes. The reactions which deviated significantly from linearity include those which contain strong dipoles, highlighting the significant role long-range attractive forces play in CN and OH reactions. Using a simple electrostatic potential, cross-sections were determined for reactions with CN. No linear correlation was found between the calculated and experimental cross sections for the majority of the reactions studied. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Rate constants for heterolytic fragmentation of beta-(ester)alkyl radicals were determined by a combination of direct laser flash photolysis studies and indirect kinetic studies. The 1,1-dimethyl-2-mesyloxyhexyl radical (4a) fragments in acetonitrile at ambient temperature with a rate constant of k(het) > 5 x 10(9) s(-1) to give the radical cation from 2-methyl-2-heptene (6), which reacts with acetonitrile with a pseudo-first-order rate constant of k = 1 x 10(6) s(-1) and is trapped by methanol in acetonitrile in a reversible reaction. The 1,1-dimethyl-2-(diphenylphosphatoxy)hexyl radical (4b) heterolyzes in acetonitrile to give radical cation 6 in an ion pair with a rate constant of k(het) = 4 x 10(6) s(-1), and the ion pair collapses with a rate constant of k < or = 1 x 10(9) s(-1). Rate constants for heterolysis of the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(diphenylphosphatoxy)ethyl radical (5a) and the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(trifluoroacetoxy)ethyl radical (5b) were measured in various solvents, and an Arrhenius function for reaction of 5a in THF was determined (log k = 11.16-5.39/2.3RT in kcal/mol). The cyclopropyl reporter group imparts a 35-fold acceleration in the rate of heterolysis of 5a in comparison to 4b. The combined results were used to generate a predictive scale for heterolysis reactions of alkyl radicals containing beta-mesyloxy, beta-diphenylphosphatoxy, and beta-trifluoroacetoxy groups as a function of solvent polarity as determined on the E(T)(30) solvent polarity scale.  相似文献   

14.
The kinetics of the reaction between CH3 and HCl was studied in a tubular reactor coupled to a photoionization mass spectrometer. Rate constants were measured as a function of temperature (296–495 K) and were fitted to an Arrhenius expression: k1 = 5.0(±0.7) × 10?13 exp{?1.4(±0.3) kcal mol?1/RT} cm3 molecule?1 s?1. This information was combined with known kinetic parameters of the reverse reaction to obtain Second Law determinations of the methyl radical heat of formation {34.7(±0.6) kcal mol?1} and entropy {46(±2) cal mol?1 K?1} at 298 K. Using the known entropy of CH3, a more accurate Third Law determination of the CH3 heat of formation at this temperature was also obtained {34.8(±0.3) kcal mol?1}. The values of k1 obtained in this study are between those reported in prior investigations. The results were also used to test the accuracy of the thermochemical information which can be obtained from kinetic studies of R + HX (X = Cl, Br, I) reactions of the type described here.  相似文献   

15.
Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are highlighted.  相似文献   

16.
Stable nitroxide radicals are potent antioxidants and are among the most effective non-thiol radioprotectants, although they react with hydroxyl radicals more slowly than typical phenolic antioxidants or thiols. Surprisingly, the reduced forms of cyclic nitroxides, cyclic hydroxylamines, are better reductants yet have no radioprotective activity. To clarify the reason for this difference, we studied the kinetics and mechanisms of the reactions of nitroxides and their hydroxylamines with (*)OH radicals and with OH-adducts by using pulse radiolysis, fluorimetric determination of phenolic radiation products, and electron paramagnetic resonance spectrometric determination of nitroxide concentrations following radiolysis. Competition kinetics with phenylalanine as a reference compound in pulse radiolysis experiments yielded rate constants of (4.5 +/- 0.4) x 10(9) M(-1) s(-1) for the reaction of (*)OH radical with 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), 4-hydroxy-TPO (4-OH-TPO), and 4-oxo-TPO (4-O-TPO), (3.0 +/- 0.3) x 10(9) M(-1) s(-1) for deuterated 4-O-TPO, and (1.0 +/- 0.1) x 10(9) M(-1) s(-1) for the hydroxylamine 4-OH-TPO-H. The kinetic isotope effect suggests the occurrence of both (*)OH addition to the aminoxyl moiety of 4-O-TPO and H-atom abstraction from the 2- or 6-methyl groups or from the 3- and 5-methylene positions. This conclusion was further supported by final product analysis, which demonstrated that (*)OH partially oxidizes 4-O-TPO to the corresponding oxoammonium cation. The rate constants for the reactions of the nitroxides with the OH-adducts of phenylalanine and terephthalate have been determined to be near 4 x 10(6) M(-1) s(-1), whereas the hydroxylamine reacted at least 50 times slower, if at all. These findings indicate that the reactivity toward (*)OH does not explain the differences between the radioprotective activities of nitroxides and hydroxylamines. Instead, the radioprotective activity of nitroxides, but not of hydroxylamines, can be partially attributed to their ability to detoxify OH-derived secondary radicals.  相似文献   

17.
To determine the detailed mechanism of 2-chlorophenol (2-CP) oxidation in supercritical water, both the experiments and theoretical calculations were conducted in this paper. A set of experiments was performed to oxidize 2-CP in supercritical water under temperatures of 380–420 °C, pressure of 25 MPa, residence times of 0–60 s, and H2O2 as oxidant. By determining the molar yields of products, the primary single-ring products were identified as chlorohydroquinone, 2,4-dichlorophenol (2,4-DCP), 2,6-DCP, and 4-CP. The trends for the molar yields of the four products were analyzed at various temperatures and residence times. And built upon the trends, the possible reaction pathways were conjectured. Subsequently, the reaction mechanism was further verified by theoretical calculations, in which density functional theory was adopted as the computational method. The calculated results have well illustrated the experimental results and ascertained the reaction paths we proposed.  相似文献   

18.
[reaction: see text] Tandem carbon-carbon bond-forming reactions were studied by using indium as a single-electron-transfer radical initiator. The radical addition-cyclization-trap reaction of a substrate having a vinyl sulfonamide group and an olefin moiety proceeded smoothly in aqueous media. The radical addition-cyclization reaction of hydrazone gave the functionalized cyclic products.  相似文献   

19.
Rate coefficients for OH reactions with the 2–5 carbon aliphatic aldehydes have been measured under pseudo first-order conditions in OH. OH was generated by flash photolysis of H2O at wavelengths greater than 165 nm and its concentration monitored using time-resolved resonance fluorescence spectroscopy. Two reactions were studied only at 298 K while five reactions were studied over the temperature range 250–425 K; negative activation energies were observed for all five reactions. Aldehyde reactivity toward OH is nearly independent of the identity of the hydrocarbon side chain. Our results are compared with those obtained in previous studies of OH-aldehyde reaction kinetics and their mechanistic implications are discussed.  相似文献   

20.
The rate constants for the reactions of OH with dimethyl ether (k1), diethyl ether (k2), di-n-propyl ether (k3), di-isopropyl ether (k4), and di-n-butyl ether (k5) have been measured over the temperature range 230–372 K using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. The temperature dependence of k1,k4, can be expressed in the Arrhenius plots form: k1 = (6.30 ± 0.10) × 10?12 exp[?(234 ± 34)/T] and k4 = (4.13 ± 0.10) × 10?12 exp[(274 ± 26)/T]. The Arrhenius plots for k2,k3, and k5, were curved and they were fitted to the three parameter expressions: k2 = (1.02 ± 0.08) × 10?17 T2 exp[(797 ± 24)/T], k3 = (1.84 ± 0.23) × 10?17T2 exp[(767 ± 34)/T], and k5 = (6.29 ± 0.74) × 10?18T2 exp[(1164 ± 34)/T]. The values at 298 K are (2.82 ± 0.21) × 10?12, (1.36 ± 0.11) × 10?11,(2.17 ± 0.16) × 10?11, (1.02 ± 0.10) × 10?11, and (2.69 ± 0.22) × 10?11 for k1, k2, k3, k4, and k5, respectively, (in cm3 molecule?1 s?1). These results are compared to the literature data. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号