首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of an inclusion complex between 4‐aminobiphenyl (4‐AB) and β‐cyclodextrin molecules (β‐CD), allows the use of thiolated β‐CDs as chemi‐adsorbed material on a Au electrode as a self‐assembled submonolayer for the selective square wave voltammetric determination of 4‐AB. The submonolayer was characterized by reductive desorption and an association constant of 1.2×104 L/mol was obtained. The optimization of variables yielded a linear dependence of ip/4‐AB concentration in the range of 10?5 to 10?4 mol/L. The selectivity of the method was evaluated in the presence of other aromatic amines obtaining better results with the modified electrode. This methodology was applied to the voltammetric determination of 4‐AB in wastewater samples.  相似文献   

2.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

3.
A new sensor, gold‐6‐amino‐2‐mercaptobenzothiazole (6A2MBT), was fabricated via a self‐assembly procedure. Electrochemical properties of the monolayer were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent antifouling property against the oxidation products of DA, allowed us to construct a dynamic calibration curve with two linear parts, 1.00×10?6 to 3.72×10?4 and 3.72×10?4 to 6.42×10?4 M DA, with correlation coefficients of 0.997 and 0.992 and a detection limit of 1.57×10?7 M DA by using differential pulse voltammetry (DPV), respectively. Finally, the performance of the Au‐6A2MBT modified electrode was successfully tested for electrochemical detection of DA in a pharmaceutical sample.  相似文献   

4.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   

5.
The mixed‐valent nickel hexacyanoferrate (NiHCF) and poly(3,4‐ethylenedioxythiophene) (PEDOT) hybrid film (NiHCF‐PEDOT) was prepared on a glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The films were characterized using atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and electrochemical impedance spectroscopy (AC impedance). The advantages of these films were demonstrated for the detection of ascorbic acid (AA) using cyclic voltammetry and amperometric techniques. The electrocatalytic oxidation of AA at different electrode surfaces, such as the bare GCE, the NiHCF/GCE, and the NiHCF‐PEDOT/GCE modified electrodes, was determined in phosphate buffer solution (pH 7). The AA electrochemical sensor exhibited a linear response from 5×10−6 to 1.5×10−4 M (R2=0.9973) and from 1.55×10−4 to 3×10−4 M (R2=0.9983), detection limit=1×10−6 M, with a fast response time (3 s) for AA determination. In addition, the NiHCF‐PEDOT/GCE was advantageous in terms of its simple preparation, specificity, stability and reproducibility.  相似文献   

6.
Horseradish peroxidase, previously modified with 1‐adamantane moieties, was supramolecularly immobilized on gold electrodes coated with perthiolated β‐cyclodextrin. The functionalized electrode was employed for the construction of an amperometric biosensor device for hydrogen peroxide using 1 mM hydroquinone as electrochemical mediator. The biosensor exhibited a fast amperometric response (6 s) and a good linear response toward H2O2 concentration between 12 μM and 450 μM. The biosensor showed a sensitivity of 1.02 mA/M cm2, and a very low detection limit of 5 μM. The electrode retained 97% of its initial electrocatalytic activity after 30 days of storage at 4 0C in 50 mM sodium phosphate buffer, pH 7.0.  相似文献   

7.
Column electrodes pretreated through oxidation–reduction cycles were traditionally used in electrochemical surface‐enhanced Raman scattering (SERS). In this study, a disposable screen‐printed carbon electrode was introduced into in situ electrochemical SERS through the electrodeposition of dendritic gold/silver nanoparticles (Au/AgNPs) onto the surface of the carbon working electrode to induce the SERS enhancement effect on the electrode. Scanning electron microscopy images showed that dendritic Au/AgNPs nanostructures could be fabricated under appropriate electrodeposition conditions and could present a minimum SERS factor of 4.25 × 105. Furthermore, the absorbed behavior of 4‐mercaptopyridine was investigated under different potentials. The adsorption configuration was inferred to transform from ‘vertical’ to ‘lying‐flat’. The proposed new electrode combined with a portable Raman spectrometer could be useful in the identifying products or intermediates during electrochemical synthesis or electrochemical catalysis in in situ electrochemical SERS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

9.
Electrochemical oxidation of a phospholipid, phosphatidylcholine (PC), was accomplished at a 4‐aminothiophenol (ATP)‐modified gold electrode coated with a layer‐by‐layer assembly of an electrochemical catalyst (dirhodium phosphomolybdic acid), a trapping agent for PC (a cyclophane, CP, derivative, 1,4‐xylylene‐1,4‐phenylene‐diacetate), and a spacer (generation‐4 polyamidoamine dendrimer, PAMAM). The layer‐by‐layer assembly process and the trapping of PC was verified by quartz crystal microbalance measurements; Au|ATP|CP|PAMAM|CP trapped (1.5±0.4)×10?9 mol cm?2 of PC. The electrocatalytic oxidation of PC yielded a current that varied linearly with concentration over the range 1–50 μM; the R2 value was 0.996.  相似文献   

10.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

11.
A PVC/TTF‐TCNQ composite electrode has been employed as detector in a flow injection system. The proposed method allows the simultaneous detection of ascorbic acid (AA) and uric acid (UA) in mixtures by using a FIA system in a simple manner, without pre‐treatment or modified electrode. This method is based on the amperometric determination of (a) ascorbic acid at 0.15 V and (b) both analytes at 0.35 V, being the response linear in the range 1×10?2–4×10?4 M for both analytes with detection limits (S/N=3) of 1.2×10?4 M and 8.1×10?5 M for AA and UA, respectively.  相似文献   

12.
本实验制备了一种新型的氮杂铜配合物修饰金电极,该电极可用于抗坏血酸的测定。采用循环伏安法和扫描电化学显微镜技术对电极进行了表征。该修饰电极可催化氧化抗坏血酸,相对于裸电极抗坏血酸在修饰电极上氧化电位移动了250mV,并且氧化电流在抗坏血酸的浓度为5.0×10−7 to 4.0×10−5 mol/L时呈线性关系,检测限为4.8×10-8 mol/L。用此方法测定抗坏血酸与文献报道的测定结果一致,这表明该电极可用作抗坏血酸测定的电化学传感器。  相似文献   

13.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

14.
A copolymer, poly(aniline‐co‐o‐aminophenol), was prepared chemically by using ammonium peroxydisulfate as an oxidant. The monomer concentration ratio of o‐aminophenol to aniline strongly influences the copolymerization rate and properties of the copolymer. The optimum composition of a mixture for the chemical copolymerization consisted of 0.3 M aniline, 0.021 M o‐aminophenol, 0.42 M ammonium peroxydisulfate, and 2 M H2SO4. The result of cyclic voltammograms in a potential region of ?0.20 to 0.80 V (vs.SCE) indicates that the electrochemical activity of the copolymer prepared under the optimum condition is similar to that of polyaniline in more acid solutions. However, the copolymer still holds the good electrochemical activity until pH 11.0. Therefore, the pH dependence of the electrochemical property of the copolymer is improved, compared with poly(aniline‐co‐o‐aminophenol) prepared electrochemically, and is much better than that of polyaniline. The spectra of IR and 1H NMR confirm that o‐aminophenol units are included in the copolymer chain, which play a key role in extending the usable pH region of the copolymer. The visible spectra of the copolymers show that a high concentration ratio of o‐aminophenol to aniline in a mixture inhibits the chain growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5573–5582, 2007  相似文献   

15.
The electrochemical oxidation of procaine hydrochloride (PC?HCL, 2‐diethylaminoethyl 4‐aminobenzoate hydrochloride) was investigated at as‐deposited boron‐doped diamond (ad‐BDD) electrode, anodically oxidized BDD (ao‐BDD) electrode and glassy carbon (GC) electrode using cyclic voltammetry (CV). Well‐defined cyclic voltammograms were obtained for PC?HCL oxidation with high signal‐to‐background (S/B) ratio, low tendency for adsorption, good reproducibility and long‐term stability at ad‐BDD electrode, demonstrating its superior electrochemical behavior and significant advantages in contrast to ao‐BDD and GC electrode. At 100 μM PC?HCL, the voltammetric S/B ratio was nearly one order of magnitude higher at an ad‐BDD electrode than that at a GC electrode. In a separate set of experiments for oxidation of 100 μM PC?HCL, 96%, 92% and 84% of the initial oxidation peak current was retained at the ad‐BDD, ao‐BDD and GC electrode, respectively, by stirring the solution after the tenth cycle. The current response was linearly proportional to the square root of the scan rate within the range 10–1000 mV s?1 in 10 μM PC?HCL solutions, indicating that the oxidation process was diffusion‐controlled with negligible adsorption at an ad‐BDD surface. The good linearity was observed for a concentration range from 5 to 200 μM with a linear equation of y=0.03517x+0.65346 (r=0.999), and the detection limit was 0.5 μM for oxidation of PC?HCL at the ad‐BDD electrode. The ad‐BDD electrode could maintain 100% of its original activity after intermittent use for 3 months.  相似文献   

16.
《Electroanalysis》2017,29(9):2138-2146
Mefloquine (MQ) is a quinoline based antimalarial drug, which is potent against multiple drug‐resistant Plasmodium falciparum . It is widely prescribed for the prophylactic treatment of malaria. Due to extensive usage of MQ, constant monitoring of the drug level in human body is of paramount importancein order to ensure that optimum drug exposure is achieved. The present work describes a gold nanourchins (AuNUs) based electrochemical sensor for the determination of MQ.AuNUs were synthesized via seed‐mediated method and characterized using ultraviolet‐visible spectroscopy, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, zeta‐sizer and electrochemical techniques (electrochemical impedance spectroscopy and cyclic voltammetry). Fabrication of the sensor was done by drop‐coating the synthesized AuNUs onto a glassy carbon electrode. The fabricated sensor exhibited enhanced voltammetric response, which was attributed to the excellent conductivity and high surface area of AuNUs. Under optimum square wave voltammetric conditions, the sensor displayed two linear response ranges (from 2.0×10−9 to 1.0×10−6 M and from 1.0×10−6 to 1.0×10−3 M) with a detection limit of 1.4 nM. The electrode demonstrated good reproducibility, stability and selectivity over common interferents. The utility of the sensor was successfully assessed for quantification of the drug in pharmaceutical preparation and spiked human urine sample. Thus, the present study demonstrates a promising approach for determination of MQ with practical utility in quality control and clinical analysis.  相似文献   

17.
In this study, a fluorescent material, 2‐naphthyl‐4‐amino benzoate, is synthesized by the esterification of 4‐aminobenzoic acid with 2‐naphthol. This molecule is used in the bulk polymerization of aniline, which results in the formation of poly(aniline‐2‐naphthyl‐4‐aminobenzoate). For comparison, polyaniline and also poly(aniline‐4‐aminobenzoic acid) salts are prepared via bulk polymerization. Formation and properties of these polymeric materials are evaluated by Fourier‐transform infrared (FT‐IR), 13C nuclear magnetic resonance, matrix‐assisted laser desorption ionization, UV‐Vis, Fluorescence, X‐ray diffraction (XRD), Field emission‐scanning electron microscopy (FE‐SEM), Differential scanning calorimetry (DSC), thermogravimetric analysis, electrical resistance and electrochemical techniques. P(ANI‐2NA4ABA) is obtained in nanofiber morphology in 106 wt% yield with respect to the amount of aniline used with comparable conductivity of conventional polyaniline salts. This polymer salt is stable up to 220°C and indicates melting at 146°C on heating and crystal formation at 128°C on cooling. This polymer shows higher wavelength fluorescence compared to the conventional polyaniline salts. This polymer is used as an electrode material without binder, which shows a specific capacitance of 360 F g?1 at 0.25 A g?1.  相似文献   

18.
Titania sol‐gel modified gold electrode (TSGMGE) was prepared with the usage of a new proposed cold deposition method at ?10 °C. Scanning electron microscope (SEM) operating at 30 kV was used to obtain micrographs of unmodified and modified electrodes. The obtained results showed that this procedure yields a sol‐gel with high porosity in comparison to conventional methods. The modified Au electrode was fabricated by trapping the L‐glutamine in titania sol‐gel at low temperatures to preparation of a new titania sol‐gel glutamine modified gold electrode (TSGGMGE). The possibility determination of traces of Cu(II) in the presence of As(III) was investigated using proposed electrode. Under the optimized conditions, copper was accumulated at ?0.35 V (vs. Ag/AgCl) for 40 s in 0.1 M acetate buffer (pH 4.0) in the presence of different amounts of arsenic. Two dynamic linear responses with good reproducibility were observed for copper ions in the concentration range of 1 × 10?6 ?4 × 10?4 M and 4 × 10?8 ?6 × 10?7 M.  相似文献   

19.
《Electroanalysis》2004,16(17):1413-1418
The in‐site functionalization of 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4′‐mercapto‐N‐phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well‐defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0×10?6?1.25×10?4 M and 8.0×10?6?1.3×10?4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3σ) for DA and AA were found to be 1.2×10?6 M and 2.4×10?6 M, respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

20.
The effect of component contents and membrane thickness on the detection limit (DL), slope (m), linear range (LR) and response time (RT) of Pb2+ solid contact potentiometric ion selective electrodes (SCISE) based on 4,10‐diaza‐2,3,11,12‐dibenzo‐18‐crown‐6 (1), 4,10‐diaza‐2,3,11,12‐di(4‐tert‐butylbenzo)‐18‐crown‐6 (2) and 4,10‐diaza‐2,3,11,12‐dibenzo‐18‐crown‐6‐N,N′‐di(carboxymethyl) (3) as ionophores was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The use of an intermediate layer of poly(3‐octyl)thiophene between the gold substrate and the selective membrane was explored. SCISE prepared showing the best responses had typical DL, m, LR and RT values of 10?6 M, 29 mV/dec, 10?5 to 10?3 M and 2 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号