共查询到20条相似文献,搜索用时 0 毫秒
1.
A method is presented to artificially generate initial conditions and transient inflow-conditions for DNS and LES. It creates velocity fields that satisfy a given Reynolds-stress-tensor and length-scale. Compared to existing approaches, the new method features greater flexibility, efficiency and applicability. It is well suited for the complex geometries and for the arbitrary grids that occur in technical applications. This is demonstrated in connection with the generation of initial data for an internal combustion engine. To assess the accuracy and efficiency of the new approach, it is applied to the test-case of a non-premixed jet-flame, which is known to be sensitive to transient inflow-data. 相似文献
2.
Inflow boundary conditions for turbulent plane channel flow are generated by solving evolution equations only for the most energetic eddies. The dynamical systems are derived by Galerkin projecting the Navier-Stokes equations onto the subspaces spanned by various sets of the most energetic modes from a proper orthogonal decomposition (POD) of the same flow. Low-energy small-scale POD-modes are added randomly in order to impose some energy in the high wave number range. This is found to be crucial in order to more rapidly establish the correct level of dissipation and achieve a more realistic distribution of energy between the velocity components. The method is tested on a DNS of R*=180 and a LES of R*=400. Statistics such as mean velocity, rms-profiles, turbulent shear-stress and energy spectra become close to the fully developed state within 1500 wall units downstream the inlet. PACS 47.27.Eq 相似文献
3.
David K Bisset 《国际流体数值方法杂志》2002,39(10):961-977
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This paper demonstrates that a good compromise is possible with the advected grid explicit (AGE) method. Starting from the same initial field as a previous spectral DNS, AGE method simulations of a planar turbulent wake were carried out as DNS, and then at three levels of reduced resolution. The latter cases were in a sense large‐eddy simulations (LES), although no specific sub‐grid‐scale model was used. Results for the two DNS methods, including variances and power spectra, were very similar, but the AGE simulation required much less computational effort. Small‐scale information was lost in the reduced resolution runs, but large‐scale mean and instantaneous properties were reproduced quite well, with further large reductions in computational effort. Quality of results becomes more sensitive to the value chosen for one of the AGE method parameters as resolution is reduced, from which it is inferred that the numerical stability procedure controlled by the parameter is acting in part as a sub‐grid‐scale model. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
4.
Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral
numerical simulations. Temperature fields were analyzed at friction Reynolds number Re
τ=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved
simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the
temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral
turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids,
the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results
point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat
transfer. 相似文献
5.
I. Torrano M. Martinez-Agirre M. Tutar 《International Journal of Computational Fluid Dynamics》2016,30(2):141-154
A passive grid-generated turbulence technique for generating turbulent inflow conditions in large-eddy simulation (LES) is developed on moderate number of mesh cells and the results are compared with synthetic methods and wind tunnel experiments performed at Reynolds (Re) number of order 100 (based on Taylor microscale). Consistent with previous investigations, it is found that the synthetic methods turbulence dissipate the turbulence kinetic energy very quickly while the present technique represents this decay more accurately. However, this pre-computation method usually requires considerable computational cost. The aim of this study is, therefore, to decrease the computational cost by employing a relatively coarse mesh resolution accompanied with an appropriate wall modelling approach in the solid boundary. The results are within an acceptable accuracy and, therefore, offer a cost-effective solution to generate inflow turbulence parameters for their use in different aerodynamic applications at low Re numbers. 相似文献
6.
The interaction of turbulence, temperature fluctuation, liquid fuel transport, mixing and evaporation is studied by using
Large Eddy Simulations (LES). To assess the accuracy of the different components of the methods we consider first isothermal,
single phase flow in a straight duct. The results using different numerical methods incorporating dynamic Sub-Grid-Scale (SGS)
models are compared with DNS and experimental data. The effects of the interactions among turbulence, temperature fluctuation,
spray transport, evaporation and mixing of the gaseous fuel are studied by using different assumptions on the temperature
field. It has been found that there are strong non-linear interactions among temperature-fluctuation, evaporation and turbulent
mixing which require additional modeling if not full LES is used. The developed models and methods have been applied to a
gas turbine burner into which liquid fuel is injected. The dispersion of the droplets in the burner is described.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
7.
Simple dimensional arguments are used in establishing three different regimes of particle time scale, where explicit expression for particle Reynolds number and Stokes number are obtained as a function of nondimensional particle size (d/η) and density ratio. From a comparative analysis of the different computational approaches available for turbulent multiphase flows it is argued that the point–particle approach is uniquely suited to address turbulent multiphase flows where the Stokes number, defined as the ratio of particle time scale to Kolmogorov time scale (τp/τk), is greater than 1. The Stokes number estimate has been used to establish parameter range where point–particle approach is ideally suited. The point–particle approach can be extended to handle “finite-sized” particles whose diameter approach that of the smallest resolved eddies. However, new challenges arise in the implementation of Lagrangian–Eulerian coupling between the particles and the carrier phase. An approach where the inter-phase momentum and energy coupling can be separated into a deterministic and a stochastic contribution has been suggested. 相似文献
8.
We consider the chemical reaction in a turbulent flow for the case that the time scale of turbulence and the time scale of
the reaction are comparable. This process is complicated by the fact that the reaction takes place intermittently at those
locations where the species are adequately mixed. This is known as spatial segregation. Several turbulence models have been
proposed to take the effect of spatial segregation into account. Examples are the probability density function (PDF) and the
conditional moment closure (CMC) models. The main advantage of these models is that they are able to parameterize the effects
of turbulent mixing on the chemical reaction rate. As a price several new unknown terms appear in these models for which closure
hypothesis must be supplied. Examples are the conditional dissipation 〈 χ ∣ φ 〉, the conditional diffusion 〈 κ ∇2 φ ∣ u, φ 〉 and the conditional velocity 〈 u ∣ φ 〉. In the present study we investigate these unknown terms that appear in the PDF and CMC model by means of a direct
numerical simulation (DNS) of a fully developed turbulent flow in a channel geometry. We present the results of two simulations
in which a scalar is released from a continuous line source. In the first we consider turbulent mixing without chemical reaction
and in the second we add a binary reaction. The results of our simulations agree very well with experimental data for the
quantities on which information is available. Several closure hypotheses that have been proposed in the literature, are considered
and validated with help of our simulation results.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
9.
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (k+ = 10–20) and relative roughness spacing (s+/k+ = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift y+ (∼10–15), which, interestingly, corresponds to the relative roughness k+ = 10. 相似文献
10.
The present paper discusses large eddy simulations of incompressible turbulent flows in complex geometries. Attention is focused on the application of the Schur complement method for the solution of the elliptic equations arising from the fractional step procedure and/or the semi‐implicit discretization of the momentum equations in velocity–pressure representation. Fast direct and iterative Poisson solvers are compared and their global efficiency evaluated both in serial and parallel architecture environments for model problems of physical relevance. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
The accuracy of boundary conditions for computational aeroacoustics is a well‐known challenge, due in part to the necessity of truncating the flow domain and replacing the analytical boundary conditions at infinity with numerical boundary conditions. In particular, the inflow boundary condition involving turbulent velocity or scalar fields is likely to introduce spurious waves into the domain, therefore degrading the flow behavior and deteriorating the physical acoustic waves. In this work, a method to generate low‐noise, divergence‐free, synthetic turbulence for inflow boundary conditions is proposed. It relies on the classical view of turbulence as a superposition of random eddies convected with the mean flow. Within the proposed model, the vector potential and the requirement that the individual eddies must satisfy the linearized momentum equations about the mean flow are used. The model is tested using isolated eddies convected through the inflow boundary and an experimental benchmark data for spatially decaying isotropic turbulence. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated. 相似文献
13.
For direct numerical simulation (DNS) of turbulent boundary layers, gen- eration of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods. 相似文献
14.
The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are investigated. On the other hand, evaluations of predictions by LES and RANS are conducted using DNS results. The predictions of both LES and RANS almost agree with the DNS results in both cases, but the predicted temperature variances near the wall by RANS give different results as compared with DNS. This is because the dissipation rate of temperature variance is difficult to predict by the present RANS, which is found by the evaluation using DNS results. 相似文献
15.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle). 相似文献
16.
The near wake structure of a square cross section cylinder in flow perpendicular to its length was investigated experimentally over a Reynolds number (based on cylinder width) range of 6700–43,000. The wake structure and the characteristics of the instability wave, scaling on θ at separation, were strongly dependent on the incidence angle () of the freestream velocity. The nondimensional frequency (Stθ) of the instability wave varied within the range predicted for laminar instability frequencies for flat plate wakes, jets and shear layers. For = 22.5°, the freestream velocity was accelerated over the side walls and the deflection of the streamlines (from both sides of the cylinder) towards the center line was higher compared to the streamlines for = 0°. This caused the vortices from both sides of the cylinder to merge by x/d 2, giving the mean velocity distribution typical of a wake profile. For = 0°, the vortices shed from both sides of the cylinder did not merge until x/d 4.5. The separation boundary layer for all cases was either transitional or turbulent, yet the results showed good qualitative, and for some cases even quantitative, agreement with linearized stability results for small amplitude disturbances waves in laminar separation layers. 相似文献
17.
The Lie group, or symmetry approach, developed by Oberlack (see e.g. Oberlack [26] and references therein) is used to derive new scaling laws for various quantities of a zero pressure gradient turbulent boundary layer flow. The approach unifies and extends the work done by Oberlack for the mean velocity of stationary parallel turbulent shear flows. From the two-point correlation (TPC) equations the knowledge of the symmetries allows us to derive a variety of invariant solutions (scaling laws) for turbulent flows, one of which is the new exponential mean velocity profile that is found in the mid-wake region of flat-plate boundary layers. Further, a third scaling group was found in the TPC equations for the one-dimensional turbulent boundary layer. This is in contrast to the Navier–Stokes and Euler equations, which have one and two scaling groups, respectively. The present focus is on the exponential law in the outer region of turbulent boundary layer corresponding new scaling laws for one- and two-point correlation functions. A direct numerical simulation (DNS) of a flat plate turbulent boundary layer with zero pressure gradient was performed at two different Reynolds numbers Re=750,2240. The Navier–Stokes equations were numerically solved using a spectral method with up to 140 million grid points. The results of the numerical simulations are compared with the new scaling laws. TPC functions are presented. The numerical simulation shows good agreement with the theoretical results, however only for a limited range of applicability. PACS 02.20.-a, 47.11.+j, 47.27.Nz, 47.27.Eq 相似文献
18.
In this paper an algebraic model from the constitutive equations of the subgrid stresses has been developed. This model has an additional term in comparison with the mixed model, which represents the backscatter of energy explicitly. The proposed model thus provides independent modelling of the different energy transfer mechanisms, thereby capturing the effect of subgrid scales more accurately. The model is also found to depict the flow anisotropy better than the linear and mixed models. The energy transfer capability of the model is analysed for the isotropic decay and the forced isotropic turbulence. The turbulent plane channel flow simulation is performed over three Reynolds numbers, Reτ=180, 395 and 590, and the results are compared with that of the dynamic model, Smagorinsky model, and the DNS data. Both the algebraic and dynamic models are in good agreement with the DNS data for the mean flow quantities. However, the algebraic model is found to be more accurate for the turbulence intensities and the higher‐order statistics. The capability of the algebraic model to represent backscatter is also demonstrated. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade with Incoming Wakes and Comparison with Experiments 总被引:1,自引:0,他引:1
The flow around a low-pressure turbine rotor blade with incoming periodic wakes is computed by means of DNS and LES. The latter
adopts a dynamic sub-grid-scale model. The computed results are compared with time-averaged and instantaneous measured quantities.
The simulation sreveal the presence of elongated flow structures, stemming from the incoming wake vorticity, which interact
with the pressure side boundary layer. As the wake approaches the upstream half of the suction side, its vortical structures
are stretched and align with the main flow, resulting in an impingement at virtually zero angle of attack. Periodically, in
the absence of impinging wakes, the laminar suction side boundary layer separates in the adverse pressure gradient region.
Flow in the laminar separation bubble is found to undergo transition via a Kelvin–Helmholtz instability. Subsequent impingement
of the wake inhibits separation and thus promotes boundary layer reattachment. LES provides a fair reproduction of the DNS
results both in terms of instantaneous, phase-averaged, and time-averaged flow fields with a considerable reduction in computational
effort.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
20.
An eighth‐order filter method for a wide range of compressible flow speeds (H. C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22–26, 2009, Trondheim, Norway) is employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high‐order filter method is designed for accurate and efficient simulations of shock‐free compressible turbulence, turbulence with shocklets, and turbulence with strong shocks with minimum tuning of scheme parameters. The value of the Mc considered is for the TML range from the quasi‐incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self‐similarity property, compressibility effects, and the presence of large‐scale structures with shocklets for high Mc) are considered for the LES study. The LES results that used the same scheme parameters for all studied cases agree well with experimental results and published direct numerical simulations (DNS). Published 2012. This article is a US Government work and is in the public domain in the USA. 相似文献