首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflow boundary conditions for turbulent plane channel flow are generated by solving evolution equations only for the most energetic eddies. The dynamical systems are derived by Galerkin projecting the Navier-Stokes equations onto the subspaces spanned by various sets of the most energetic modes from a proper orthogonal decomposition (POD) of the same flow. Low-energy small-scale POD-modes are added randomly in order to impose some energy in the high wave number range. This is found to be crucial in order to more rapidly establish the correct level of dissipation and achieve a more realistic distribution of energy between the velocity components. The method is tested on a DNS of R*=180 and a LES of R*=400. Statistics such as mean velocity, rms-profiles, turbulent shear-stress and energy spectra become close to the fully developed state within 1500 wall units downstream the inlet. PACS 47.27.Eq  相似文献   

2.
The accuracy of boundary conditions for computational aeroacoustics is a well‐known challenge, due in part to the necessity of truncating the flow domain and replacing the analytical boundary conditions at infinity with numerical boundary conditions. In particular, the inflow boundary condition involving turbulent velocity or scalar fields is likely to introduce spurious waves into the domain, therefore degrading the flow behavior and deteriorating the physical acoustic waves. In this work, a method to generate low‐noise, divergence‐free, synthetic turbulence for inflow boundary conditions is proposed. It relies on the classical view of turbulence as a superposition of random eddies convected with the mean flow. Within the proposed model, the vector potential and the requirement that the individual eddies must satisfy the linearized momentum equations about the mean flow are used. The model is tested using isolated eddies convected through the inflow boundary and an experimental benchmark data for spatially decaying isotropic turbulence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A method is presented to artificially generate initial conditions and transient inflow-conditions for DNS and LES. It creates velocity fields that satisfy a given Reynolds-stress-tensor and length-scale. Compared to existing approaches, the new method features greater flexibility, efficiency and applicability. It is well suited for the complex geometries and for the arbitrary grids that occur in technical applications. This is demonstrated in connection with the generation of initial data for an internal combustion engine. To assess the accuracy and efficiency of the new approach, it is applied to the test-case of a non-premixed jet-flame, which is known to be sensitive to transient inflow-data.  相似文献   

4.
A passive grid-generated turbulence technique for generating turbulent inflow conditions in large-eddy simulation (LES) is developed on moderate number of mesh cells and the results are compared with synthetic methods and wind tunnel experiments performed at Reynolds (Re) number of order 100 (based on Taylor microscale). Consistent with previous investigations, it is found that the synthetic methods turbulence dissipate the turbulence kinetic energy very quickly while the present technique represents this decay more accurately. However, this pre-computation method usually requires considerable computational cost. The aim of this study is, therefore, to decrease the computational cost by employing a relatively coarse mesh resolution accompanied with an appropriate wall modelling approach in the solid boundary. The results are within an acceptable accuracy and, therefore, offer a cost-effective solution to generate inflow turbulence parameters for their use in different aerodynamic applications at low Re numbers.  相似文献   

5.
Direct numerical simulation (DNS) has been performed to study the channel flow over a backward‐facing step at a Reynolds number Reb=5600 based on the step height h and the inflow bulk velocity Ub. A dynamic method has been used in order to generate realistic turbulent inflow conditions. The results upstream of the step compared well with the fully developed channel flow. Downstream of the step our results show excellent agreement with experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This paper demonstrates that a good compromise is possible with the advected grid explicit (AGE) method. Starting from the same initial field as a previous spectral DNS, AGE method simulations of a planar turbulent wake were carried out as DNS, and then at three levels of reduced resolution. The latter cases were in a sense large‐eddy simulations (LES), although no specific sub‐grid‐scale model was used. Results for the two DNS methods, including variances and power spectra, were very similar, but the AGE simulation required much less computational effort. Small‐scale information was lost in the reduced resolution runs, but large‐scale mean and instantaneous properties were reproduced quite well, with further large reductions in computational effort. Quality of results becomes more sensitive to the value chosen for one of the AGE method parameters as resolution is reduced, from which it is inferred that the numerical stability procedure controlled by the parameter is acting in part as a sub‐grid‐scale model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A series of spatially developing mixing layers are simulated using the large eddy simulation (LES) technique. A hyperbolic tangent function and data derived from boundary layer simulations are used to generate the inflow condition, and their effects on the flow are compared. The simulations are performed in both two and three dimensions. In two‐dimensional simulations, both types of inflow conditions produce a layer that grows through successive pairings of Kelvin–Helmholtz (K–H) vortices, but the composition ratio is lower for the hyperbolic tangent inflow simulations. The two‐dimensional simulations do not undergo a transition to turbulence. The three‐dimensional simulations produce a transition to turbulence, and coherent structures are found in the post‐transition region of the flow. The composition ratio of the three‐dimensional layers is reduced in comparison to the counterpart two‐dimensional runs. The mechanisms of growth are investigated in each type of simulation, and amalgamative pairing interactions are found in the pre‐transition region of the three‐dimensional simulations, and throughout the entire computational domain of those carried out in two‐dimensions. The structures beyond the post‐transition region of the three‐dimensional simulations appear to behave in a much different manner to their pre‐transition cousins, with no pairing‐type interactions observed in the turbulent flow. In order to accurately simulate spatially developing mixing layers, it is postulated that the inflow conditions must closely correspond to the conditions present in the reference experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are investigated. On the other hand, evaluations of predictions by LES and RANS are conducted using DNS results. The predictions of both LES and RANS almost agree with the DNS results in both cases, but the predicted temperature variances near the wall by RANS give different results as compared with DNS. This is because the dissipation rate of temperature variance is difficult to predict by the present RANS, which is found by the evaluation using DNS results.  相似文献   

10.
The stochastic finite element method (SFEM) based on the local, averages of random fields, which was proposed in [5], is now generalized to analyze the structures with several correlated random parameters. The covariance matrix of the local averages of a random vector field is derived. The SFEM based on the local averages of random vector fields is formulated. The numerical examples show that the generalized SFEM preserves the advantages of the original one, i. e., rapid convergence, good accuracy and insensitivity to the correlation structures of random parameters.Project supported by National Natural Science Foundation of China.  相似文献   

11.
Hybrid models have found widespread applications for simulation of wall‐bounded flows at high Reynolds numbers. Typically, these models employ Reynolds‐averaged Navier–Stokes (RANS) and large eddy simulation (LES) in the near‐body and off‐body regions, respectively. A number of coupling strategies between the RANS and LES regions have been proposed, tested, and applied in the literature with varying degree of success. Linear eddy‐viscosity models (LEVM) are often used for the closure of turbulent stress tensor in RANS and LES regions. LEVM incorrectly predicts the anisotropy of Reynolds normal stress at the RANS‐LES interface region. To overcome this issue, use of non‐linear eddy‐viscosity models (NLEVM) have started receiving attention. In this study, a generic non‐linear blended modeling framework for performing hybrid simulations is proposed. Flow over the periodic hills is used as the test case for model evaluation. This case is chosen due to complex flow physics with simplified geometry. Analysis of the simulations suggests that the non‐linear hybrid models show a better performance than linear hybrid models. It is also observed that the non‐linear closures are less sensitive to the RANS‐LES coupling and grid resolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In the present study, residual‐based variational multiscale methods are developed for and applied to variable‐density flow at low Mach number. In particular, two different formulations are considered in this study: a standard stabilized formulation featuring SUPG/PSG/grad‐div terms and a complete residual‐based variational multiscale formulation additionally containing cross‐ and Reynolds‐stress terms as well as subgrid‐scale velocity terms in the energy‐conservation equation. The proposed methods are tested for various laminar flow test cases as well as a test case at laminar via transitional to turbulent flow stages. Stable and accurate results are obtained for all numerical examples. Substantial differences in the results between the two approaches do not become notable until a high temperature gradient is applied and the flow reaches a turbulent flow stage. The more pronounced influence of adding subgrid‐scale velocity terms to the energy‐conservation equation on the results than adding analogous terms to the momentum‐conservation equation in this situation appears particularly noteworthy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A high‐order accurate upwind compact difference scheme with an optimal control coefficient is developed to track the flame front of a premixed V‐flame. In multi‐dimensional problems, dispersion effect appears in the form of anisotropy. By means of Fourier analysis of the operators, anisotropic effects of the upwind compact difference schemes are analysed. Based on a level set algorithm with the effect of exothermicity and baroclinicity, the flame front is tracked. The high‐order accurate upwind compact scheme is employed to approximate the level set equation. In order to suppress numerical oscillations, the group velocity control technique is used and the upwind compact difference scheme is combined with the random vortex method to simulate the turbulent premixed V‐flame. Distributions of velocities and flame brush thickness are obtained by this technique and found to be comparable with experimental measurement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
We propose a pressure‐based unified solver for gas‐liquid two‐phase flows where compressible and incompressible flows coexist. Unlike the original thermo–Cubic Interpolated Propagation Combined Unified Procedure (CIP‐CUP) method proposed by Himeno et al (Transactions of the Japan Society of Mechanical Engineers, Series B, 2003), we split the advection term of the governing equations into a conservation part and into the rest. The splitting of advection term has two advantages. One is the high degree of freedom in choosing discretization schemes such as central‐difference schemes, upwind schemes, and Total Variation Diminishing (TVD) schemes. The other is the ease of implementation on unstructured grids. The advantages enable the analyses of various flows such as turbulent and supersonic ones in actual complicated boundaries. Therefore, the solver is useful for practical analyses. The solver was validated on the following test cases: subsonic single‐phase flows, incompressible single‐phase turbulent flows, and incompressible gas‐liquid two‐phase flows. With unstructured grids, we obtained the equivalent results as the ones with structured grids. After the validations, subsonic jet impinging on a water pool was calculated and compared with experimental results. It was confirmed that the calculated results were consistent with the experimental ones.  相似文献   

16.
17.
This paper presents the second validation step of a compressible discontinuous Galerkin solver with symmetric interior penalty (DGM/SIP) for the direct numerical simulation (DNS) and the large eddy simulation (LES) of complex flows. The method has already been successfully validated for DNS of an academic flow and has been applied to flows around complex geometries (e.g. airfoils and turbomachinery blades). During these studies, the advantages of the dissipation properties of the method have been highlighted, showing a natural tendency to dissipate only the under‐resolved scales (i.e the smallest scales present on the mesh), leaving the larger scales unaffected. This phenomenon is further enhanced as the polynomial order is increased. Indeed, the order increases the dissipation at the largest wave numbers, while its range of impact is reduced. These properties are spectrally compatible with a subgrid‐scale model, and hence DGM may be well suited to be used for an implicit LES (ILES) approach. A validation of this DGM/ILES approach is here investigated on canonical flows, allowing to study the impact of the discretisation on the turbulence for under‐resolved computations. The first test case is the LES of decaying homogeneous isotropic turbulence (HIT) at very high Reynolds number. This benchmark allows to assess the spectral behaviour of the method for implicit LES. The results are in agreement with theory and are even slightly more accurate than other numerical results from literature, obtained using a pseudo‐spectral (PS) method with a state‐of‐the‐art subgrid‐scale model. The second benchmark is the LES of the channel flow. Three Reynolds numbers are considered: Reτ=395, 590 and 950. The results are compared with DNS of Moser et al. and Hoyas et al., also using PS methods. Both averaged velocity and fluctuations are globally in good agreement with the reference, showing the ability of the method to predict equilibrium wall‐bounded flow turbulence. To show that the method is able to perform accurate DNS, a DNS of HIT at Reλ=64 and a DNS of the channel flow at Reτ=180 are also performed. The effects of the grid refinement are investigated on the channel flow at Reτ=395, highlighting the improvement of the results when refining the mesh in the spanwise direction. Finally, the modification of the ILES parameters, that is the Riemann solver and of the SIP coefficient, is studied on both cases, showing a significant influence on the choice of the Riemann solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a finite element method with a residual‐based artificial viscosity for simulation of turbulent compressible flow, with adaptive mesh refinement based on a posteriori error estimation with sensitivity information from an associated dual problem. The artificial viscosity acts as a numerical stabilization, as shock capturing, and as turbulence capturing for large eddy simulation of turbulent flow. The adaptive method resolves parts of the flow indicated by the a posteriori error estimates but leaves shocks and turbulence under‐resolved in a large eddy simulation. The method is tested for examples in 2D and 3D and is validated against experimental data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The merits of transport equation‐based models are investigated by adopting an enhanced pressure‐based method for turbulent cavitating flows. An analysis of the mass and normal‐momentum conservation at a liquid–vapour interface is conducted in the context of homogeneous equilibrium flow theory, resulting in a new interfacial dynamics‐based cavitation model. The model offers direct interpretation of the empirical parameters in the existing transport‐equation‐based models adopted in the literature. This and three existing cavitation models are evaluated for flows around an axisymmetric cylindrical body and a planar hydrofoil, and through a convergent–divergent nozzle. Although all models considered provide qualitatively comparable wall pressure distributions in agreement with the experimental data, quantitative differences are observed in the closure region of the cavity, due to different compressibility characteristics of each cavitation model. In particular, the baroclinic effect of the vorticity transport equation plays a noticeable role in the closure region of the cavity, and contributes to the highest level of turbulent kinetic energy there. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices are constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic are then derived by using the random variable's moment function method and algebra synthesis method. Two examples are used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号