首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A portable capillary electrophoretic system with contactless conductivity detection was used for fingerprint analysis of postblast explosive residues from commercial organic and improvised inorganic explosives on various surfaces (sand, concrete, metal witness plates). Simple extraction methods were developed for each of the surfaces for subsequent simultaneous capillary electrophoretic analysis of anions and cations. Dual‐opposite end injection principle was used for fast (<4 min) separation of 10 common anions and cations from postblast residues using an optimized separation electrolyte composed of 20 mM MES, 20 mM l ‐histidine, 30 μM CTAB and 2 mM 18‐crown‐6. The concentrations of all ions obtained from the electropherograms were subjected to principal component analysis to classify the tested explosives on all tested surfaces, resulting in distinct cluster formations that could be used to verify (each) type of the explosive.  相似文献   

2.
A CE method employing capacitively coupled contactless conductivity (C(4)D) compared to indirect UV-detection was developed for the analysis of phytochemically relevant flavonoids, such as 6-hydroxyflavone, biochanin A, hesperetin and naringenin. To ensure fast separation at highest selectivity, sensitivity and peak symmetry, the pH value and the concentration of the running BGE had to be optimized regarding both co- and counter-EOF mode. Optimum conditions were found to be 1.0 and 5.0 mM chromate BGE (pH 9.50) in the counter- and co-EOF mode, respectively. Validation of the established CE-C(4)D method pointed out to be approximately seven times more sensitive compared to indirect UV-detection applying the same conditions. The lower LOD defined at an S/N of 3:1 was found between 0.12 and 0.21 microg/mL for the analytes of interest using C(4)D and between 0.77 and 1.20 microg/mL using indirect UV-detection. Compared to an earlier published CE method employing direct UV-detection, C(4)D was found to be approximately two times more sensitive. Due to the lower baseline noise, C(4)D showed an excellent regression coefficient >0.99 compared to 0.93 when using indirect UV detection calibrating within a concentration range between 1 and 10 microg/mL. The influence of the sugar moiety on the conductivity of a flavonoid was studied upon the analysis of the aglycon hesperetin and the rutinosid hesperidin. The sugar moiety in hesperedin shows a higher conductivity compared to hesperetin. Finally, the optimized established CE-C(4)D method was applied to the determination and quantification of naringenin in Sinupret.  相似文献   

3.
A method for the determination of ethambutol (EMB), a first‐line drug against tuberculosis, based on CE with capacitively coupled contactless conductivity detection is proposed. The separation of EMB and its main product of degradation were achieved in less than 3 min with a resolution of 2.0 using a BGE composed of 50 mmol/L histidine and 30 mmol/L MES, pH 6.30. By raising the pH to 8.03, the analysis time was reduced to 1.0 min, but with a significant loss of resolution (0.7). Using the best separation conditions, linearity of 0.9976 (R2, five data points), sensitivity of 1.26×10?4 V min μmol?1 L, and LOD and quantification of 23.5 and 78.3 μmol/L, respectively, were obtained. Recoveries at four levels of concentration ranged from 95 to 102% and the concentration range studied ranged from 100 to 500 μmol/L. The results obtained for the determination of EMB in pharmaceutical formulations were compared with those obtained by using CE with photometric detection.  相似文献   

4.
Xu Y  Wang W  Li SF 《Electrophoresis》2007,28(10):1530-1539
This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.  相似文献   

5.
Capacitively coupled contactless conductivity detection (C4D) in the axial electrode configuration was introduced in 1998 as a quantification method for capillary electrophoresis. Its universality allows the detection of small inorganic ions as well as organic and biochemical species. Due to its robustness, minimal maintenance demands and low cost the popularity of this detector has been steadily growing. Applications have recently also been extended to other analytical methods such as ion chromatography, high-performance liquid chromatography and flow-injection analysis. C4D has also found use for detection on electrophoresis based lab-on-chip devices. Theoretical aspects of C4D in both the capillary and microchip electrophoresis format have been comprehensively investigated. Commercial devices are now available and the method can be considered a mature detection technique. In this article, the achievements in C4D for the time period between September 2004 and August 2007 are reviewed.  相似文献   

6.
A capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C4D) based on a sequential injection analysis (SIA) manifold was refined. Hydrodynamic injection was implemented to avoid a sampling bias by using a split-injection device based on a needle valve for precise adjustment. For safety and reliability, the integrity of the high voltage compartment at the detection end was fully maintained by implementing flushing of the high voltage interface through the capillary. With this set-up, extended fully automated monitoring applications are possible. The system was successfully tested in the field for the determination of the concentration levels of major inorganic cations and anions in a creek over a period of 5 days.  相似文献   

7.
Kubán P  Hauser PC 《Electrophoresis》2005,26(16):3169-3178
Quantitative total ionic analysis of alcoholic and nonalcoholic beverages was performed by microchip capillary electrophoresis with external contactless conductivity detection. An electrolyte solution consisting of 10.5 mM histidine, 50 mM acetic acid, and 2 mM 18-crown-6 at pH 4.1 was used for the determination of NH(4) (+), K(+), Ca(2+), Na(+), and Mg(2+). Fast analysis of Cl(-), NO(3) (-), and SO(4) (2-) was achieved in 20 mM 2-(N-morpholino)ethanesulfonic acid /histidine electrolyte solution at pH 6.0 and the simultaneous separation of up to 12 inorganic and organic anions was performed in a solution containing 10 mM His and 7 mM glutamic acid at pH 5.75. Limits of detection ranged from 90 to 250 mug/L for inorganic cations and anions, and from 200 to 2000 mug/L for organic anions and phosphate. Calibration curves showed linear dependencies over one to two orders of magnitude when the stacking effect was minimized by injecting standard solutions prepared in background electrolyte solutions. Total analysis times of 35 and 90 s were achieved for the determination of 5 inorganic cations and for the simultaneous determination of 12 inorganic and organic anions, respectively, which represents a considerable reduction of analysis time compared to conventional separation methods used in food analysis.  相似文献   

8.
CE with capacitively coupled contactless conductivity detection (C(4)D) was used to determine waste products of the nitrogen metabolism (ammonia and creatinine) and of biogenic inorganic cations in samples of human urine. The CE separation was performed in two BGEs, consisting of 2 M acetic acid + 1.5 mM crown ether 18-crown-6 (BGE I) and 2 M acetic acid + 2% w/v PEG (BGE II). Only BGE II permitted complete separation of all the analytes in a model sample and in real urine samples. The LOD values for the optimized procedure ranged from 0.8 microM for Ca(2+) and Mg(2+) to 2.9 microM for NH(4)(+) (in terms of mass concentration units, from 7 microg/L for Li(+) to 102 microg/L for creatinine). These values are adequate for determination of NH(4)(+), creatinine, Na(+), K(+), Ca(2+) and Mg(2+) in real urine samples.  相似文献   

9.
Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE‐C4D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field‐enhanced sample injection, coupled with CE‐C4D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01–0.1 μM (1.7–11.1 μg/L) and sensitivity enhancements of 48‐ to 53‐fold were achieved with the large volume sample stacking‐CE‐C4D method. By performing the field‐enhanced sample injection‐CE‐C4D procedure, excellent LODs down to 0.0005–0.02 μM (0.1–2.2 μg/L) as well as sensitivity enhancements of up to 245‐ to 1002‐fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.  相似文献   

10.
The system comprises two flow injection-capillary electrophoresis interfaces into which the opposite ends of the separation capillary are inserted. The electrolyte solution flows through both interfaces by use of hydrostatic pressure. The injection of the samples into the electrolyte flow is accomplished by a rotary-type chromatographic valve at the grounded side and by a pinch-valve injector at the high-voltage side that provides sufficient isolation from the high electric field. The system allows a fully automated dual-injection sequence of samples from both capillary ends and simultaneous electrophoretic separation of anions and cations in the samples. The analytes are detected by a high-voltage contactless conductometric detector positioned approximately in the middle of the separation capillary. The parameters of the system were evaluated. The repeatability of the flow injection-capillary electrophoresis system for the simultaneous determination of anions and cations was evaluated for ten consecutive injections and relative standard deviation (RSD) values for peak areas were better than 1.0%. The sample throughput for total ionic analysis was estimated to be 25 samples per hour. The system was used for automated simultaneous analysis of anions and cations in various real samples. Using a short separation capillary, rapid total ionic analysis in less then 1 min is demonstrated.  相似文献   

11.
Kubán P  Hauser PC 《Electrophoresis》2004,25(20):3398-3405
The signal-to-noise ratio of a contactless conductivity detector for capillary electrophoresis was examined for different cell arrangements and operating parameters. The best signal-to-noise ratios, and hence the best detection limits, are obtained for frequencies which give highest sensitivity. Comparative experiments for three different excitation voltages (20, 100, and 200 V(pp)) showed that the best signal-to-noise ratios were achieved for the highest excitation voltage of 200 V(pp). Low conductivity of the background electrolyte solution is mandatory to obtain lowest noise levels, and also the improvement on applying high excitation voltages was best for the electrolyte solution with lowest conductivity. The diameter of the electrodes was found to have only a negligible effect, so that a tight fitting of the electrodes to the external diameter of the capillary is not necessary. A cell without shielding between the two electrodes showed significant direct coupling (stray capacitance) and lower signal-to-noise ratios for all experimental conditions used. A serious distortion of the peak shapes was also observed for this cell arrangement.  相似文献   

12.
A new design for a compact portable lab‐on‐a‐chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC4D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm3 (w × l × h), and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip, the associated high‐voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrated into the device housing with an exchangeable plug‐and‐play cartridge format. The design of the dC4D cell has been optimized for maximum performance. The cartridge includes the top–bottom excitation and pick up electrodes incorporated into the cell and connected to push‐pull self‐latching pins that are insulated with plastic. The metal frame of the cartridge is grounded completely to eliminate electronic interferences. The cartridge is designed to clamp a thin fluidic chip at the detection point. The cartridges are replaceable whereby different cartridges have different detection electrode configurations to employ according to the sensitivity or resolution needed in the specific analytical application. The second compartment consists of all the electronics, data acquisition card, high‐voltage modules of up to ±5 kV both polarity, and batteries for 10 h of operation. The improved detector performance is illustrated by the electrophoresis analysis of six cations (NH4+, K+, Ca2+, Na+, Mg2+, Li+) with a detection limit of approximately 5 μM and the analysis of the anions (Br?, Cl?, NO2?, NO3?, SO42?, F?) with a detection limit of about 3 μM. Analytical capabilities of the instrument for food and medical applications were evaluated by simultaneous detection of organic and inorganic acids in fruit juice and inorganic cations and anions in rabbit blood samples and human urine samples are also demonstrated.  相似文献   

13.
Kubán P  Hauser PC 《Electrophoresis》2004,25(20):3387-3397
A better understanding of the characteristics of the axial contactless conductivity cell could be obtained by carefully studying the effect of the cell geometry on its frequency behavior. A good fit between theoretical and experimental results shows that the axial contactless conductometric detector can effectively be described by the simplest possible equivalent circuitry consisting of a capacitor, resistor, and a second capacitor. The cell constant is largely defined by the length of the gap between the electrodes. The effective electrode size is thus not related to the dimensions of the real electrodes but more closely to the cross-sectional area of the internal diameter of the capillary. Typical experimental values of 20 MOmega and 0.1 pF were obtained for the resistance and capacitances, respectively, of a cell formed by a 2 mm gap between two 4 mm long electrodes fitted with a capillary of 50 microm ID. It could be shown that the diameter of the electrode is not critical and tight coupling of the electrodes to the outer wall of the capillary is not needed. The peak overshoot phenomenon, which has frequently been reported, is an artefact that can be minimized by optimizing the frequency for cell excitation. The frequency setting has to be optimized for each cell design, operational amplifier, electrolyte solution and capillary.  相似文献   

14.
利用间接紫外毛细管区带电泳方法完成了对爆炸残留物中7种无机离子(K+,NH+4,NO-2,NO-3,SO2-4,ClO-3,ClO-4)的分离检测。阳离子测定采用的缓冲体系为10 mmol/L吡啶(pH 4.5)-3 mmol/L冠醚,K+和NH+4在2.6 min内达到基线分离,检出限分别为0.25 mg/L和0.10 mg/L(S/N=3)。阴离子测定采用的缓冲体系为40 mmol/L硼酸-1.8 mmol/L重铬酸钾-2 mmol/L硼酸钠(pH 8.6),氢氧化四甲铵为电渗流改性剂,5种阴离子在4.6 min内达到基线分离,检出限为0.10~1.85 mg/L。该方法已成功地应用于实际爆炸物样品种类的判定分析,取得了很好的结果。  相似文献   

15.
A simple, rapid method using CE and microchip electrophoresis with C4D has been developed for the separation of four nonsteroidal anti-inflammatory drugs (NSAIDs) in the environmental sample. The investigated compounds were ibuprofen (IB), ketoprofen (KET), acetylsalicylic acid (ASA), and diclofenac sodium (DIC). In the present study, we applied for the first time microchip electrophoresis with C4D detection to the separation and detection of ASA, IB, DIC, and KET in the wastewater matrix. Under optimum conditions, the four NSAIDs compounds could be well separated in less than 1 min in a BGE composed of 20 mM His/15 mM Tris, pH 8.6, 2 mM hydroxypropyl-beta-cyclodextrin, and 10% methanol (v/v) at a separation voltage of 1000–1200 V. The proposed method showed excellent repeatability, good sensitivity (LODs ranging between 0.156 and 0.6 mg/L), low cost, high sample throughputs, portable instrumentation for mobile deployment, and extremely lower reagent and sample consumption. The developed method was applied to the analysis of pharmaceuticals in wastewater samples with satisfactory recoveries ranging from 62.5% to 118%.  相似文献   

16.
The development of efficient and sensitive analytical methods for the separation, identification and quantification of complex biological samples is continuously a topic of high interest in biological science. In the present study, the possibility of using a polyether ether ketone (PEEK) capillary for the CE separation of peptides, proteins and other biological samples was examined. The performance of the tubing was compared with that of traditional silica capillaries. The CE analysis was performed using contactless conductivity detection (C4D), which eliminated any need for the detection window and was suitable for the detection of optically inactive compounds. In the PEEK capillary the cathodic EOF was low and of excellent stability even at extremes pH. In view of this fast biological anions were analyzed using an opposite end injection technique without compromising separation. A comparison of the performances of fused‐silica and polymer capillaries during the separation of model sample mixtures demonstrated the efficiency and separation resolution of the latter to be higher and the reproducibility of the migration times and peak areas is better. Furthermore, PEEK capillaries allowed using simple experimental conditions without any complicated modification of the capillary surface or use of an intricate buffer composition. The PEEK capillaries are considered as an attractive alternative to the traditional fused‐silica capillaries and may be used for the analysis of complex biological mixtures as well as for developing portable devices.  相似文献   

17.
A fast separation of alkali and alkaline earth metal cations and ammonium was carried out by capillary electrochromatography on monolithic octadecylsilica columns of 15 cm length and 100 μm inner diameter using water/methanol mixtures containing acetic acid as mobile phase. On-column contactless conductivity detection was used for quantification of these non-UV-absorbing species. The method was also extended successfully to the determination of small amines as well as of amino acids, and the separation selectivity was optimized by varying the composition of the mobile phase. Detection limits of about 1 μM were possible for the inorganic cations as well as for the small amines, while the amino acids could be quantified down to about 10 μM. The separation of 12 amino acids was achieved in the relatively short time of 10 min.  相似文献   

18.
《Electrophoresis》2018,39(16):2152-2159
Simultaneous electromembrane extraction (EME) of six trace metal cations (Cu2+, Zn2+, Co2+, Ni2+, Pb2+, Cd2+) from saline samples was investigated. CE with capacitively coupled contactless conductivity detection (C4D) was used to determine the metals in acceptor solutions due to its excellent compatibility with the minute volumes of acceptor solutions. Bis(2‐ethylhexyl)phosphate (DEHPA) was selected as a suitable nonselective modifier for EME transport of target metal cations. Both, the individual effect of each major inorganic cation (Na+, K+, Ca2+, Mg2+) and their synergistic effect on EME of the trace metal cations were evaluated. In both cases, a decrease in extraction efficiency was observed when major inorganic cations were present in the sample. This effect was more significant for Ca2+ and Mg2+. The system was optimized for simultaneous extractions of the six target metals from saline samples (50 mM Na+, 5 mM Mg2+, 1 mM K+, and 1 mM Ca2+) and following EME conditions were applied. Organic phase consisted of 1‐nonanol containing 1% (v/v) DEHPA, acceptor solution was 1 M acetic acid (HAc) and sample pH was adjusted to 5. Sample was stirred at 750 rpm and EMEs were carried out at extraction potential of 10 V for 20 min. The method presented a repeatability between 8 and 21.8% (n = 5), good linearity in 0.5–10 μM concentration range (R2 = 0.987‐0.999) and LOD better than 2.6 nM. Applicability of the EME–CE–C4D method to the analyses of metal cations in drinking water, seawater, and urine samples was also demonstrated.  相似文献   

19.
A method was developed to determine simultaneously kanamycin, its related substances and sulphate in kanamycin sulphate using capacitively coupled contactless conductivity detection. Kanamycin is an aminoglycoside antibiotic that lacks a strong UV-absorbing chromophore. Due to its physicochemical properties, CE in combination with capacitively coupled contactless conductivity detection was chosen. The separation method uses a BGE composed of 40 mM 2-(N-morpholino)ethanesulphonic acid monohydrate and 40 mM L-histidine, pH 6.35. A 0.6 mM N-cetyltrimethyl ammonium bromide (CTAB) solution was added as electroosmotic flow modifier in a concentration below the critical micellar concentration (CMC). Ammonium acetate 50 mg/L was used as internal standard. In total, 30 kV was applied in reverse polarity on a fused-silica capillary (65/41 cm; 75 μm id). The optimized separation was obtained in less than 6 min with good linearity (R(2)=0.9999) for kanamycin. It shows a good precision expressed as RSD on the relative peak areas equal to 0.3 and 1.1% for intra-day and inter-day precision, respectively. The LOD and LOQ are 0.7 and 2.3 mg/L, respectively. Similarly, for sulphate, a good linearity (R(2)=0.9996) and precision (RSD 0.4 and 0.6% for intra-day and inter-day, respectively) were obtained.  相似文献   

20.
The enantiomers of the anions of five α‐hydroxy acids, namely lactic acid, α‐hydroxybutyric acid, 2‐hydroxycaproic acid, 2‐hydroxyoctanoic acid and 2‐hydroxydecanoic acid, as well as the two α‐amino acids aspartic acid and glutamic acid, were baseline separated and detected by CE with contactless conductivity detection. Vancomycin was employed as chiral selector and could be used with conductivity detection without having to resort to a partial filling protocol as needed when this reagent is used with UV absorbance measurements. The procedure was successfully applied to the determination of the lactic acid enantiomers in samples of milk and yogurt. Linearity was achieved in the concentration range of 10–500 μmol/L with good correlation coefficients (0.9993 and 0.9990 for L ‐ and D ‐lactic acid, respectively). The LODs (3 S/N) for L ‐ and D ‐lactic acid were determined as 2.8 and 2.4 μmol/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号