首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
串列双圆柱绕流问题的数值模拟   总被引:8,自引:0,他引:8  
刘松  符松 《计算力学学报》2000,17(3):260-266
本文运用有限体积方法,对绕串列放置的双圆柱的二维不可压缩流动进行了数值计算。为研究两圆柱不同间距对圆柱相互作用和尾流特征的影响,选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)在1.5~5.0之间每隔0.5共八个有代表性的间距进行了计算模拟。计算均在Re=200条件下进行。计算结果表明:对该绕流问题,流动特征在很大程度上取决于间距的大小。且间距存在一临界值,间距比从小于临界值变化到大于临界  相似文献   

2.
This paper describes a numerical study of the two‐dimensional and three‐dimensional unsteady flow over two square cylinders arranged in an in‐line configuration for Reynolds numbers from 40 to 1000 and a gap spacing of 4D, where D is the cross‐sectional dimension of the cylinders. The effect of the cylinder spacing, in the range G = 0.3D to 12D, was also studied for selected Reynolds numbers, that is, Re = 130, 150 and 500. An incompressible finite volume code with a collocated grid arrangement was employed to carry out the flow simulations. Instantaneous and time‐averaged and spanwise‐averaged vorticity, pressure, and streamlines are computed and compared for different Reynolds numbers and gap spacings. The time averaged global quantities such as the Strouhal number, the mean and the RMS values of the drag force, the base suction pressure, the lift force and the pressure coefficient are also calculated and compared with the results of a single cylinder. Three major regimes are distinguished according to the normalized gap spacing between cylinders, that is, the single slender‐body regime (G < 0.5), the reattach regime (G < 4) and co‐shedding or binary vortex regime (G ≥4). Hysteresis with different vortex patterns is observed in a certain range of the gap spacings and also for the onset of the vortex shedding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A uniform flow past two unequal sized square cylinders arranged in a side-by-side pattern and at a Reynolds number of 50,000 has been investigated using large eddy simulation (LES) technique. The modelling of sub-grid scales of turbulence is done using the Smagorinsky model. The effect of the transverse gap ratio (T/D) on the flow characteristics has been studied. Numerical simulations are carried out for five different transverse gap ratios (T/D), namely 1.120, 1.250, 1.375, 1.750 and 2.500. Results in terms of the aerodynamic forces, Strouhal number, mean base pressure coefficient, streamlines, vorticity, surface pressure distribution, normal and shear stresses are presented. A shift in the stagnation point for the small square cylinder from the centre of its front face towards its gap side is seen at smaller T/D ratios. The presence of a jet-like flow seen in the gap side is more pronounced at T/D = 1.12. A biased gap side flow towards the near wake of the small square cylinder is seen at smaller T/D ratios. No interference effect is seen at T/D = 2.5. The flow behaviour is similar to that of the isolated square cylinder at this gap ratio.  相似文献   

4.
虚拟边界法研究正交双圆柱及串列双圆球绕流   总被引:6,自引:0,他引:6  
把Goldstein等人提出的虚拟边界法推广到三维情况,研究了 Re=150时不同间距下正交双圆柱绕流,和Re=250时不同间距下串列双 圆球绕流流场. 对于正交双圆柱绕流,当间距比大于3,下游圆柱对上游圆柱尾流的影响只 限定在下游圆柱的尾流所扫过的范围之内;当间距比小于等于3,下游圆柱对上游圆柱尾流 的影响扩大,下游圆柱尾流扫过区上下出现两排三维流向二次涡结构. 对于串列圆球绕流, 研究发现,在小间距比(L/D≈ 1.5)的情况下,由于上下游圆球尾流区的相互抑 制消除了压力不稳定性,整个流场呈现稳 态轴对称特征;间距比为2.0时,周向压力梯度诱发出流体的周向输运,流场呈现稳态非对 称性,但流场中存在特定的对称面;间距比增大到2.5后,绕流场开始周期振荡,原有的对 称面依旧存在;在间距比3.5时下游圆球下表面的涡结构强度有所减弱,导致占优频率发生 交替;间距比增至7.0时,整个流场恢复稳态特征,两圆球尾部同时出现双线涡,这时流场 对称面的位置发生了变动.  相似文献   

5.
This paper presents the results of a numerical study on the flow characteristics and heat transfer over two equal square cylinders in a tandem arrangement. Spacing between the cylinders is five widths of the cylinder and the Reynolds number ranges from 1 to 200, Pr=0.71. Both steady and unsteady incompressible laminar flow in the 2D regime are performed with a finite volume code based on the SIMPLEC algorithm and non‐staggered grid. A study of the effects of spatial resolution and blockage on the results is provided. In this study, the instantaneous and mean streamlines, vorticity and isotherm patterns for different Reynolds numbers are presented and discussed. In addition, the global quantities such as pressure and viscous drag coefficients, RMS lift and drag coefficients, recirculation length, Strouhal number and Nusselt number are determined and discussed for various Reynolds numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Three-dimensional fluid computations have been performed to investigate the flows around two circular cylinders in tandem arrangements at a subcritical Reynolds number, Re=2.2×104. The center-to-center space between the cylinders was varied from twice the cylinder diameter to five times that, and the flows and fluid-dynamic forces obtained from the simulations are compared with the experimental results reported in the literature. Special attention is paid to the characteristics of the vortices shed from the upstream cylinder such as the convection, the impingement onto the downstream cylinder and the interaction with the vortices from the downstream cylinder. The effects of the vortices from the upstream cylinder on the fluid-dynamic forces acting on the downstream cylinder are discussed.  相似文献   

7.
A stabilized finite element formulation is employed to study incompressible flows past a pair of cylinders at Reynolds numbers 100 and 1000 in tandem and staggered arrangements. Computations are carried out for three sets of cylinder arrangements. In the first two cases the cylinders are arranged in tandem and the distance between their centres is 2·5 and 5·5 diameters. The third case involves the two cylinders in staggered arrangement. The distance between their centres along the flow direction is 5·5 diameters, while it is 0·7 diameter in the transverse direction. The results are compared with flows past a single cylinder at corresponding Reynolds numbers and with experimental observations by other researchers. It is observed that the qualitative nature of the flow depends strongly on the arrangement of cylinders and the Reynolds number. In all cases, when the flow becomes unsteady, the downstream cylinder, which lies in the wake of the upstream one, experiences very large unsteady forces that may lead to wake-induced flutter. The Strouhal number, based on the dominant frequency in the time history of the lift coefficient, for both cylinders attains the same value. In some cases, even though the near wake of the two cylinders shows temporal periodicity, the far wake does not. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the numerical simulation of the flow structure around a square cylinder in a uniform shear flow. The calculations were conducted by solving the unsteady 2D Navier–Stokes equations with a finite difference method. The effect of the shear parameter K of the approaching flow on the vortex-shedding Strouhal number and the force coefficients acting on the square cylinder is investigated in the range K=0·0–0·25 at various Reynolds numbers from 500 to 1500. The computational results are compared with some existing experimental data and previous studies. The effect of shear rate on the Strouhal number and the force acting on the cylinder has a tendency to reduce the oscillation. The Strouhal number, mean drag and amplitude of the fluctuating force tend to decrease as the shear rate increases, but show no significant change at low shear rate. Increasing the Reynolds number decreases the Strouhal number and increases the force acting on the cylinder. At high shear rate the shedding frequencies of the fluctuating drag and lift coefficients are identical. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Results are presented for flow-induced vibrations of a pair of equal-sized circular cylinders of low nondimensional mass (m*=10) in a tandem arrangement. The cylinders are free to oscillate both in streamwise and transverse directions. The Reynolds number, based on the free-stream speed and the diameter of the cylinders, D is 100 and the centre-to-centre distance between the cylinders is 5.5D. The computations are carried out for reduced velocities in the range 2≤U*≤15. The structural damping is set to zero for enabling maximum amplitudes of oscillation. A stabilized finite element method is utilized to carry out the computations in two dimensions. Even though the response of the upstream cylinder is found to be qualitatively similar to that of an isolated cylinder, the presence of a downstream cylinder is found to have significant effect on the behaviour of the upstream cylinder. The downstream cylinder undergoes very large amplitude of oscillations in both transverse and streamwise directions. The maximum amplitude of transverse response of the downstream cylinder is quite similar to that of a single cylinder at higher Re beyond the laminar regime. Lock-in and hysteresis are observed for both upstream and downstream cylinders. The downstream cylinder undergoes large amplitude oscillations even beyond the lock-in state. The phase between transverse oscillations and lift force suffers a 180 jump for both the cylinders almost in the middle of the synchronization regime. The phase between the transverse response of the two cylinders is also studied. Complex flow patterns are observed in the wake of the freely vibrating cylinders. Based on the phase difference and the flow patterns, the entire flow range is divided into five sub-regions.  相似文献   

10.
11.
The flow-induced vibrations of two elastically mounted circular cylinders subjected to the planar shear flow in tandem arrangement are studied numerically at Re=160. A four-step semi-implicit Characteristic-based split (4-SICBS) finite element method is developed under the framework of the fractional step method to cope with the vortex-induced vibration (VIV) problem. For the computational code verification, two benchmark problems are examined in the laminar region: flow-induced vibration of an elastically mounted cylinder having two degrees of freedom and past two stationary ones in tandem arrangement. Regarding the two-cylinder VIVs in shear flow, the computation is conducted with the cylinder reduced mass Mr=2.5π and the structural damping ratio ξ=0.0. The effects of some key parameters, such as shear rate (k=0.0, 0.05, 0.1), reduced velocity (Ur=3.0–18.0) and spacing ratio (Lx/D=2.5, 3.5, 4.5, 8.0), are demonstrated. It is observed that the shear rate and reduced velocity play an important role in the VIVs of both cylinders at various center-to-center distances. Additionally, in comparison with the single cylinder case, a further study indicated that the gap flow has a significant impact on such a dynamic system, leading it to be more complex. The results show that, the performances of ‘dual-resonant’ are discovered in the shear flow. A valley is formed in transverse oscillation amplitude of DC for each spacing ratio when Ur is about 6.0. For the X–Y trajectories of the circular cylinders, figure-eight, figure-O and oval shape are obtained. Finally, the interactions between cylinders are revealed, together with the wake-induced vibration (WIV) mechanism underlying the oscillation characteristics of both cylinders exposed to shear flow. Besides, the “T+P” wake pattern is discovered herein.  相似文献   

12.
13.
IntroductionThewakeinterferencewithcomplexconfigurationsconsistingofmultiplebluffbodiesisattractingattentionofalotofresearchers,becauseofitspracticalapplicationstoindustry.Forexample,twinstrutstosupportwingsinthefieldsofaeronauticalengineering;twinchim…  相似文献   

14.
侧柱与串列双柱绕流之间的干扰   总被引:1,自引:0,他引:1  
本文给出了关于串列双柱与创柱间流动干扰的实验研究结果。当三个圆柱排成等边三角形并靠得很近时,由于三圆柱间强烈的缝隙流动,大大地改变了绕流其中的串列双圆柱的流态。特别,当三圆柱中心距等于二倍圆柱直径时,在串列双柱的前、后柱之间形成了强烈的偏斜的缝隙流,出现了独特的压力分布以及要比单柱高出三倍以上的旋涡脱落频率。  相似文献   

15.
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first‐order and second‐order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth‐order Runge–Kutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two‐dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side‐by‐side. Results of these simulations were extensively compared with the previous numerical data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a Galerkin weighted residual finite element numerical solution method, with velocity material time derivative discretisation, is applied to solve for a classical fluid mechanics system of partial differential equations modelling two‐dimensional stationary incompressible Newtonian fluid flow. Classical examples of driven cavity laminar flow and laminar flow past a cylinder are presented. Numerical results are compared with data found in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The complex behaviour of an unsteady flow around two circular cylinders in tandem is of interest for many civil engineering applications across a wide range of aerospace, mechanical and marine applications. The present paper analyses Vortex-Induced Vibration (VIV) for the flow around two circular cylinders. It has been shown that the amount of kinetic energy which can be captured by VIV is a function of the arrangement of the two cylinders. The upstream cylinder is fixed while the downstream is mounted elastically with one degree of freedom normal to the mean flow direction. The efficiency of the VIV power obtained from downstream cylinder is compared for different arrangement of the cylinders. For this purpose, the longitudinal and lateral distances between the cylinders were varied and the Reynolds number was kept constant. Scale-Adaptive Simulation (SAS) and Shear Stress Transport (SST) CFD models are utilized to analyse the validity of the SAS turbulence model. The results indicate that both turbulence models predict the flow characteristics around the cylinders with reasonable precision; however, the predictions from SAS were more accurate compared to the SST. Based on this comparison, SAS model was chosen as a tool to analyse the VIV response of the downstream cylinder. The location of the downstream cylinder has been altered in the wake of upstream one in order to obtain the optimum efficiency of the VIV power. The results reveal that the arrangement of the cylinders can significantly change the efficiency. It is also observed that cylinders offset from one another show a higher efficiency compared to cylinders with their centres aligned.  相似文献   

18.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Large eddy simulation of planar shear flow past a square cylinder has been investigated. Dynamic Smagorinsky model has been used to model subgrid scale stress. The shear parameter, K, namely the nondimensional streamwise velocity gradient in the lateral direction, is 0.0, 0.1 and 0.2. Reynolds number based on the centerline velocity is fixed at Re=21400. The time and span‐averaged velocity components, pressure coefficient, Reynolds stresses for uniform are in good agreement with the literature. In shear flow the calculated flow structure and mean velocity components are shown to be markedly different from those of the uniform flow. With increasing shear parameter, the cylinder wake is dominated by clockwise vortices. Both the velocity components in shear flow are compared with respective components in uniform flow. Comparison of normal and shear stresses between shear and no shear case have also been presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号