首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dumbbell‐shaped isobutyl‐substituted 1,2‐bis(4‐vinylphenyl)acetylene‐linked POSS (DA1), 9,10‐bis(4‐vinylphenyl)ethynyl)anthracene‐linked POSS (DA2), and 5,5″‐bis((4‐vinyl)phenyl)ethynyl)‐2,2′:5′2″‐terthiophene‐linked POSS (DA3), and corresponding model compounds were synthesized by cross metathesis and Sonogashira reaction, and their film formability, and thermal and optical properties were examined. The dumbbell structures of the obtained compounds were confirmed by 1H‐, 13C‐, and 29Si‐NMR and MALDI‐TOF‐MS analysis. The dumbbell‐shaped POSS compounds gave optically transparent films. All the model compounds, however, formed opaque films. All the films were emissive under UV irradiation. The dumbbell structures minimize longer wavelength shifts and improve emission efficiency of the luminescent π‐conjugated linker units in their solid states compared with the model compounds. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

2.
A facile method was developed to synthesize a new type of polyhedral oligomeric silsesquioxane (POSS). It contained a single amine group and seven aliphatic moieties on its corners. FT‐IR, 1H‐NMR, 13C‐NMR, 13C‐1H COSY, and 1H‐1H COSY confirmed that cages with eight corners were the main part of the product. This new POSS was used to modify the structure of hexamethylene diisocyanate trimer and then copolymerized with hexamethylene diisocyanate and poly (tetramethylene glycol) to get a serious of waterborne polyurethane (WPU)/POSS hybrid materials with low dielectric constants for microelectronics applications. The results showed that POSS particles were uniformly dispersed in the WPU dispersions. The WPU/POSS films did not show any macrophase separation, even when the POSS content was as high as 16%. As the POSS content increased from 0% to 16%, the tensile strength was increased from 2.3 to 7.3 MPa, the dielectric constant was decreased from about 2.9 to 2.0, and the thermal stability of the WPU/POSS was also improved.  相似文献   

3.
Two novel organic–inorganic hybrid polyfluorene derivatives, poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐[2,5‐bis(octyloxy)‐1,4‐phenylene]} (PFDOPPOSS) and poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐bithiophene} (PFT2POSS), were synthesized by the Pd‐catalyzed Suzuki reaction of polyhedral oligomeric silsesquioxane (POSS) appended fluorene, dioctyl phenylene, and bithiophene moieties. The synthesized polymers were characterized with 1H NMR spectroscopy and elemental analysis. Photoluminescence (PL) studies showed that the incorporation of the POSS pendant into the polyfluorene derivatives significantly enhanced the fluorescence quantum yields of the polymer films, likely via a reduction in the degree of interchain interaction as well as keto formation. Additionally, the blue‐light‐emitting polyfluorene derivative PFDOPPOSS showed high thermal color stability in PL. Moreover, single‐layer light‐emitting diode devices of an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration fabricated with PFDOPPOSS and PFT2POSS showed much improved brightness, maximum luminescence intensity, and quantum efficiency in comparison with devices fabricated with the corresponding pristine polymers PFDOP and PFT2. In particular, the maximum external quantum efficiency of PFT2POSS was 0.13%, which was twice that of PFT2 (0.06%), and the maximum current efficiency of PFT2POSS was 0.38 cd/A, which again was twice that of PFT2 (0.19 cd/A). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2943–2954, 2006  相似文献   

4.
Thermotropic POSS‐containing poly(methacrylate) with long alkyl chain tethered polyhedral oligomeric silsesquioxane (POSS) in the side chain and the block copolymers (PMMA‐b‐PMAC11POSS) were developed by through living anionic polymerization. The resulting polymers indicated a phase transition temperature at 112 °C from spherocrystal to isotropic phase. The POSS‐containing polymer segments tended to form matrix of microphase‐separated nanostructures in the bulk even in the very low volume fraction, for instance, PMMA cylindrical nanostructure was obtained by PMMA175b‐PMAC11POSS11 (?PMAC11POSS = 0.44). The control of thin film morphology was carried out by not only solvent annealing, but also thermal annealing, resulting in the formation of well‐ordered dot‐ and fingerprint‐type nanostructures. This is the first report in a series of POSS‐containing block polymers that are capable for thermal annealing to generate well‐ordered microphase‐separated nanostructures in thin films. The novel thermotropic POSS‐containing block copolymer offers a promising material for block copolymer lithography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
通过热引发甲基丙烯酸环戊基-立方低聚倍半硅氧烷(R7R′Si8O12,POSS)(MA-POSS)与臭氧预处理的含氟聚酰亚胺(FPI)自由基接枝共聚制得了含多面体低聚倍半硅氧烷(POSS)的FPI纳米复合物.用核磁共振(NMR)、X-射线衍射(XRD)及场发射扫描电镜(FESEM)等手段对POSS/FPI纳米复合物的化学组成及其形貌结构进行了表征.POSS/FPI纳米复合物薄膜与原始FPI薄膜相比具有更低的、可调的介电常数,它的介电常数(κ)在2.5~2.1之间.  相似文献   

6.
Summary: This investigation presents a simultaneous and convenient approach to produce a high‐performance polyimide with a low dielectric constant by introducing the octa‐acrylated polyhedral oligomeric silsesquioxane (methacrylated‐POSS) into a polyimide matrix to form polyimide semi‐interpenetrating polymer network (semi‐IPN) nanocomposites. The differential scanning calorimetry (DSC) and Fourier‐transform infrared (FT‐IR) results indicate that the self‐curing of methacrylated‐POSS and the imidization of polyamic acid (PAA) occurs simultaneously. The morphology of a semi‐IPN structure of polyimide/POSS‐PI/POSS nanocomposites with POSS nanoparticles embedded inside the matrix is elucidated. The POSS particles are uniform and are aggregated to a size of approximately 50–60 nm inside the polyimide matrix. The interconnected POSS particles are observed at high POSS content. The structure is highly cross‐linked, so the PI/POSS nanocomposites have an enhanced glass transition temperature. The high porosity of the PI/POSS nanocomposites markedly reduces the dielectric constant of PI because of the nanometer‐scale porous structure of POSS.

FT‐IR spectra of the various compounds of A) methacrylate‐POSS before curing, B) methacrylate‐POSS after curing, C) PAA containing 15 wt.‐% POSS, and D) PI/POSS containing 15 wt.‐% POSS.  相似文献   


7.
We have developed an efficient and versatile method for the synthesis of polyhedral oligomeric silsesquioxanes (POSS)‐polymethacrylate hybrids, such as POSS‐poly(methyl methacrylate) (POSS‐PMMA), POSS‐poly(ethyl methacrylate) (POSS‐PEMA), and POSS‐poly(benzyl methacrylate) (POSS‐PBzMA) of controllable molecular weights and low polydispersities by thiol‐mediated radical polymerization at elevated temperature (100 °C). By tuning the reactant concentrations and degree of polymerization of the grafted polymethacrylate chains, POSS content in these hybrid materials could be varied. MALDI‐TOF‐MS analysis of the hybrid molecule shows that the nanoscale POSS moiety is connected to the end of polymethacrylate chain through the sulfur atom bridge. These hybrid materials were further characterized using various techniques such as FTIR, XRD, NMR, TGA, and DSC. In all synthesized hybrids, the incorporation of POSS moiety at the end of polymethacrylate chain resulted in the decrease of glass transition temperature (Tg) compared to that of neat polymethacrylates of comparable molecular weights. Surprisingly, POSS‐PMMA hybrids only with relatively high POSS content (~ 10 and 16 wt %) showed physical aging behavior as reveled by DSC study. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1111–1123, 2008  相似文献   

8.
The mechanical properties and thermal stability of polymers can be enhanced through the formation of nanocomposites. Nanocomposites consisting of hybrid copolymers of methacrylcyclohexyl polyhedral oligomeric silsesquioxane (POSS‐1) and methyl methacrylate (MMA) with up to 92 wt % (51 mol %) POSS‐1 and with superior thermal properties were synthesized using solution polymerization. The POSS‐1 contents of the copolymers were similar to or slightly higher than those in the feeds, the polydispersity indices were relatively low, and the degree of polymerization decreased with increasing POSS‐1 content. POSS‐1 enhanced the thermal stability, increasing the degradation temperature, reducing the mass loss, and preventing PMMA‐like degradation from propagating along the chain. The mass loss was reduced in a high POSS‐1 content copolymer since the polymerization of POSS‐1 with itself reduced sublimation. Exposure to 450 °C produced cyclohexyl‐POSS‐like remnants in the POSS‐1 monomer and in all the copolymers. The degradation of these remnants, for the copolymers and for the POSS‐1 monomer, yielded 75% SiO2 and an oxidized carbonaceous residue. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4264–4275, 2007  相似文献   

9.
Cage silsesquioxane, denoted as polyhedral oligomeric silsesquioxane (POSS) has high crystallinity to readily cause aggregation when it is induced into polymer side chain. In this work, side-opened POSS was employed to construct a bifunctional monomer for cyclopolymerization. The collapsed symmetry of the POSS core effectively reduced the crystallinity to realize homogeneous films, while a traditional POSS homopolymer formed turbid and brittle films. The obtained film showed high transparency and thermal stability.  相似文献   

10.
We describe here the design and synthesis of the polyhedral oligomeric silsesquioxane (POSS)‐based dual‐functional molecular fillers for simultaneously lowering refractive indices and improving thermomechanical properties of conventional polymers. We prepared the composite films with poly(methyl methacrylate) and polystyrene containing the series of the POSS derivatives with the single functional unit for interacting with polymer chains and heptacyclopentyl substituents for creating exclusive volumes around the POSS core. From the measurements of refractive indices of polymer composites, it was revealed that all POSS fillers can lower the refractive index of the films. In addition, thermal stabilities and mechanical properties were enhanced by adding POSS fillers. The filler effect on the thermal properties can be explained by the structural features of POSS: The highly symmetrical structure of the silica cube should suppress thermal motions, resulting in the large enhancement of thermomechanical properties of polymer matrices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3583–3589  相似文献   

11.
New low‐temperature curable organic/inorganic hybrid polymers were designed and synthesized as gate dielectrics for organic thin‐film transistors (OTFTs). Allyl alcohols were introduced to polyhedral oligomeric silsesquioxane (POSS) via hydrosilyation to produce an alcohol‐functionalized POSS derivative (POSS‐OH). POSS‐OH was then reacted with hexamethoxymethylmelamine at carrying molar ratios at 80 °C in the presence of a catalytic amount of p‐toluenesulfonic acid to give highly cross‐linked network polymers (POSS‐MM). The prepared thin films were smooth and hard after the thermal cross‐linking reaction and had very low leakage currents (<10?8 A/cm2) with no significant absorption over the visible spectral range. Pentacene‐based OTFTs using the synthesized insulators as gate dielectric layers had higher hole mobilities (up to 0.36 cm2/Vs) than a device using thermally cross‐linked poly(vinyl phenol) and melamine as the gate dielectric layer (0.18 cm2/Vs). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3260–3268  相似文献   

12.
Biodegradable aliphatic–aromatic copolyester nanohybrids, with polyhedral oligomeric silsesquioxane (POSS) moieties tethered between poly(lactic acid) (PLA) and poly(butylene terephthalate) segments, is designed and prepared. First, (bis(2‐hydroxyethyl) dipropionate POSS, BH‐POSS) is synthesized under mild conditions, then in situ polycondensation is carried out in the presence of terephthalic acid, PLA oligomer, 1,4‐butanediol, and BH‐POSS. 1 H‐NMR and Fourier transfer infrared spectroscopy confirm that Michael addition reaction of amino‐POSS and hydroxyethyl acrylate takes place efficiently and forms BH‐POSS in high yield at room temperature. Owing to similar functional groups, BH‐POSS could be easily incorporated into the macromolecular chains and obtain final copolyester nanohybrids. Moreover, X‐ray diffractometry and transmission electron microscopy observations demonstrate that POSS moieties occur self‐assembly behaviors and form nanoaggregates with the diameter of 50–100 nm. The thermal stability and mechanical properties of the copolyester nanohybrids containing BH‐POSS are substantially improved. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) molecules are used to create well-ordered Langmuir-Blodgett films containing silanol groups that interact strongly with dimethyl methylphosphonate (DMMP), a commonly used simulant for the chemical warfare agent sarin. The interaction of DMMP within multilayer POSS films is studied by uptake coefficient and temperature-programmed desorption (TPD) measurements, as well as reflection-absorption infrared spectroscopy (RAIRS). Results indicate a low uptake probability; however, in a DMMP-saturated atmosphere, the organophosphonate molecules are capable of diffusing into and adsorbing within the films. TPD and RAIRS measurements reveal no evidence of DMMP decomposition within the film. Rather, DMMP is found to desorb molecularly with a desorption energy of 122 kJ/mol. RAIRS reveals that strong hydrogen-bonding interactions between the phosphoryl groups of the organophosphonate molecules and the silanol groups of the POSS molecules are responsible for the high sorption energy of the system.  相似文献   

14.
Nanostructered nanofibers based on poly(vinylidene fluoride) (PVDF) and polyhedral oligomeric silsesquioxane (POSS) have been prepared by electrospinning process. The starting solutions were prepared by dissolving both the system components in the mixture N,N‐dimethylacetamide/acetone. The characteristics of the fiber prepared, studied by scanning electron microscopy, atomic force microscopy, and wide angle X‐ray diffraction, have been compared with those of PVDF fibers. Morphological characterization has demonstrated the possibility to obtain defect‐free PVDF/POSS nanofibers by properly choosing the electrospinning conditions, such as voltage, polymer concentration, humidity, etc. Conversely, in the case of fibers based on the neat polymer, it was not possible to attain the complete elimination of beads in the electrospun nanofibers. The different behavior of the two types of solutions has been ascribed to silsesquioxane molecules, which, without influencing the solution viscosity or conductivity, favor the formation of uniform structures by decreasing the system surface tension. Concerning POSS distribution in the fibers, the morphological characterization of the electrospun films has shown a submicrometric dispersion of the silsesquioxane. It is relevant to underline that cast films, prepared by the same solutions, have been found to be characterized by POSS aggregation, thus demonstrating a scarce affinity between the two‐system components. Indeed, the peculiar solvent evaporation of the electrospun solution, which is much faster than that occurring during the cast process, prevents POSS aggregation, thus leading to the formation of nanofibers characterized by a silsesquioxane dispersion similar to that present in solution. Finally, the presence of POSS improves the electrospun film mechanical properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Thermally induced polymerization of multifunctional methylmethacrylate POSS (MMA‐POSS) was studied in this work for preparation of polymer/POSS nanocomposites. The polymerization of MMA‐POSS could be promoted with benzoyl peroxide (BPO). Self‐assembly of POSS into a layer‐by‐layer structure in the MMA‐POSS polymer (TP‐MMA‐POSS) is observed with a transmission electron microscopy. An ultra‐low‐k value of about 1.85 is measured with TP‐MMA‐POSS. In addition, polyimide‐POSS nanocomposites are also prepared. These nanocomposites demonstrate good homogeneity and enhanced mechanical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5157–5166, 2008  相似文献   

16.
To investigate the relationship between the chemical structures of the side chains of polyoctahedral oligomeric silsesquioxanes (POSS) fillers and the ability to decrease the refractive indices of the polymer composites, we examined the influence on the degree of polymer chain packing by the existence of the octa‐substituted POSS derivatives. The polymer composites containing methyl‐, ethyl‐, vinyl‐, isobutyl‐, octyl‐, octadecyl‐, cyclopentyl‐, and phenyl‐substituted POSS in poly(methyl methacrylate) (PMMA) were prepared. The packing coefficients of the PMMA composites containing POSS derivatives were evaluated from molar refractions and refractive indices of the films with the Lorentz–Lorenz equation. We found that the ethyl group shows the lowest values of the packing coefficients and a significant effect in reducing the refractive indices of the polymer composites. Finally, in summary, it was shown that POSS molecules can intrinsically offer to reduce a packing. In addition, less entanglement and smaller interactions between polymer chains and the substitution groups are favorable to release a packing, resulting in decreases in refractive indices. Our findings described here are the first efforts to quantitatively evaluate the ability of POSS fillers to lower refractive indices at the molecular level. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
We report on a new strategy for fabricating well‐defined POSS‐based polymeric materials with and without solvent by frontal polymerization (FP) at ambient pressure. First, we functionalize polyhedral oligomeric silsesquioxane (POSS) with isophorone diisocyanate (IPDI). With these functionalized POSS‐containing isocyanate groups, POSS can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP in situ. Constant velocity FP is observed without significant bulk polymerization. The morphology and thermal properties of POSS‐based hybrid polymers prepared via FP are comparatively investigated on the basis of scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). Results show that the as‐prepared POSS‐based polymeric materials exhibit a higher glass transition temperature than that of pure PNMA, ascribing to modified POSS well‐dispersed in these hybrid polymers. Also, the products with different microstructures display different thermal properties. The pure PNMA exhibits a featureless morphology, whereas a hierarchical morphology is obtained for the POSS‐based polymeric materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1136–1147, 2009  相似文献   

18.
Copolymerization of ethylene with iso‐butyl substituted monoalkenyl(siloxy)‐ or monoalkenylsilsesquioxane (POSS) comonomers over bis(phenoxy‐imine) and salen‐type titanium and zirconium catalysts was studied. It was found that the polyreaction performance was significantly depended by the kind of the catalyst and by the structure and concentration of POSS in the feed. The POSS comonomer was efficiently incorporated into the polymer chain at up to 0.2 mol %. The differences in the copolymer compositions as the functions of the catalyst kind and the POSS comonomer were observed, including the varied number‐average sequence length of ethylene and unsaturated end groups, as determined by 1H NMR and FT‐IR. The presence of POSS comonomers affected also the melting and crystallization behavior of the copolymers, as evidenced by DSC, because of influence on the polymer chain arrangement. The POSS units could act as the nucleating agents. Moreover, the crystal and structural parameters of ethylene/POSS copolymers were evaluated on the basis of X‐ray results, and the limited self‐aggregation of POSS incorporated into the polymer chain, the small number and size of POSS aggregates, and the increased crystallinity degree of copolymers were demonstrated. The ethylene/POSS copolymers produced by postmetallocenes offered also high thermal stability and interesting morphological properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3918–3934  相似文献   

19.
Polyhedral oligomeric silsequioxane (POSS), having eight hydroxyl groups for the preparation of nanocomposites with polyimide (PI) was synthesized by the direct hydrosilylation of allyl alcohol with octasilsesquioxane (Q8M8H) with platinum divinyltetramethyl disiloxane Pt(dvs) as a catalyst. The structure of allyl alcohol terminated‐POSS (POSS‐OH) was confirmed by FTIR, NMR, and XRD. A high performance, low‐k PI nanocomposite from pyromellitic dianhydride (PMDA)‐4,4'‐oxydianiline (ODA) polyamic acid cured with POSS‐OH was also successfully synthesized. The incorporation of POSS‐OH into PI matrix reduced dielectric constant of PI without loosing mechanical properties. Furthermore, the effects of POSS‐OH on the morphology and properties of the PI/POSS‐OH nanocomposites were investigated using UV–vis, FTIR, XRD, SEM, AFM, transmission electron microscope (TEM), TGA, and contact angle. The homogeneous dispersion of POSS particles was confirmed by SEM, AFM, and TEM. The nanoindentation showed that the modulus increased upon increasing the concentration of POSS‐OH in PI, whereas the hardness did not increase very much with respect to loading of POSS, due to soft‐interphase around POSS molecules in the resulting nanocomposites. Overall results demonstrated the nanometer‐level integration of the polymer and POSS‐OH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5887–5896, 2008  相似文献   

20.
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号