首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimuli-responsive liquid foams and bubbles are systems for which the stability, structure, shape, and movement can be controlled by the application of stimuli. The foam stability can be modified by a stimulus which can change solution condition (pH, temperature, and ionic strength) or with the application of an external field (light and magnetic). Different foam stabilizers have been described in the literature to design these responsive foams systems ranging from surfactants, peptides, polymers, soft polymer particles, surfactants self-assembly, crystalline particles, emulsion droplets, and solid particles. This review aims to cover the recent advances of the design of stimuli-responsive liquid foams and their applications. Responsive liquid foams are attractive in textile coloring process, biomedical application, washing, and material recovery processes.  相似文献   

2.
Fluorinated surfactants and synthetic fire fighting foams are presented. The fluorinated part of those surfactants can be obtained industrially either by electrofluorination or by telomerization. The fact that fluorine atoms are present in a surfactant molecule modifies its behaviour compared to classical surfactants. It gives to the molecule outstanding chemical and thermal stabilities. Fluorine also produces in these surfactants very low surface tension in aqueous solution even when used at reduced concentrations.For those reasons, it is shown that fluorinated surfactants are particularly adapted to the formulation of film forming fire fighting foams in which they are associated to classical hydrocarbon surfactants. Finally, a way of removing the mean components of a fire fighting foam from the waste water resulting from fire fighting training or a real application is presented.  相似文献   

3.
Surfactants based on sugars are important for a variety of applications, and for this reason we present the synthesis of new sugar carboxylate/amine salts. These surfactants were obtained via a simple synthesis in high yields. Their interfacial properties were measured and the results of these tests are presented and analyzed to provide suggestions for how these surfactants might be used. Some of these surfactants demonstrated water solubility over a wide temperature range, ability to form stable foams or emulsions, and stability in the presence of calcium salts.  相似文献   

4.
Remarkable properties have emerged recently for aqueous foams, including ultrastability and responsiveness. Responsive aqueous foams refer to foams for which the stability can be switched between stable and unstable states with a change in environment or with external stimuli. Responsive foams have been obtained from various foam stabilizers, such as surfactants, proteins, polymers, and particles, and with various stimuli. Different strategies have been developed to design this type of soft material. We briefly review the two main approaches used to obtain responsive foams. The first approach is based on the responsiveness of the interfacial layer surrounding the gas bubbles, which leads to responsive foams. The second approach is based on modifications that occur in the aqueous phase inside the foam liquid channels to tune the foam stability. We will highlight the most sophisticated approaches, which use light, temperature, and magnetic fields and lead to switchable foam stability.  相似文献   

5.
Foams are usually characterized by the foaminess of their surfactant solutions and the rate of foam decay. These two properties have been described many times separately in the literature. There is a certain correlation between them, which can vary depending on the type and the concentration of the surfactants, the method of foam generation, etc. We suggest with this work a new parameter unifying foaminess and rate of foam decay. The foam production is a parameter, which is a ratio between foaminess and rate of foam decay. It was shown an example how foaminess, rate of foam decay and foam production depends on C/CMC (C - surfactant concentration, CMC - critical micelle concentration) of aqueous solutions of sodium octylsulfate (SOS). In addition, it has been stressed that a number of scientific problems on transient foams can be solved by means of the approach pointed out by this study. An example, for which the foam production depends on the way of foam generation, is given. A new criterion for assessing the ability of the surfactants to stabilize foams has been suggested. Thus, the stronger surfactants do not always produce more stable transient foams than the weaker ones, as usually is assumed.  相似文献   

6.
Wet foams are used in many important technologies either as end or intermediate products. However, the thermodynamic instability of wet foams leads to undesired bubble coarsening over time. Foam stability can be drastically improved by using particles instead of surfactants as foam stabilizers, since particles tend to adsorb irreversibly at the air-water interface. Recently, we presented a novel method for the preparation of high-volume particle-stabilized foams which show neither bubble growth nor drainage over more than 4 days. The method is based on the in-situ hydrophobization of initially hydrophilic particles to enable their adsorption on the surface of air bubbles. In-situ hydrophobization is accomplished through the adsorption of short-chain amphiphiles on the particle surface. In this work, we illustrate how this novel method can be applied to particles with various surface chemistries. For that purpose, the functional group of the amphiphilic molecule was tailored according to the surface chemistry of the particles to be used as foam stabilizers. Short-chain carboxylic acids, alkyl gallates, and alkylamines were shown to be appropriate amphiphiles to in-situ hydrophobize the surface of different inorganic particles. Ultrastable wet foams of various chemical compositions were prepared using these amphiphiles. The simplicity and versatility of this approach is expected to aid the formulation of stable wet foams for a variety of applications in materials manufacturing, food, cosmetics, and oil recovery, among others.  相似文献   

7.
Proteins and low molecular weight (LMW) surfactants are widely used for the physical stabilisation of many emulsions and foam based food products. The formation and stabilisation of these emulsions and foams depend strongly on the interfacial properties of the proteins and the LMW surfactants. Therefore these properties have been studied extensively. In this review an overview is given of interfacial properties of proteins at a mesoscopic scale and the effect of LMW surfactants (emulsifiers) on them. Properties addressed are the adsorbed amount, surface tension (reduction), network formation at interfaces and possible conformational changes during and after adsorption. Special attention is given to interfacial rheological behaviour of proteins at expanding and compressing interfaces, which simulate the behaviour in real emulsions and foams. It will be illustrated that information on interfacial rheological properties, protein conformation and interactions between adsorbed molecules can be obtained by changing experimental conditions. The relation between interfacial rheology and emulsion and foam stabilisation is subsequently addressed. It is concluded that there is a need for new measuring devices that monitor several interfacial properties on a mesoscopic and microscopic scale at the same time, and for physical models describing the various processes of importance for proteins. Real progress will only be possible if both are combined in an innovative way.  相似文献   

8.
Features of fine-mesh structure polyurethane foams depending on the use of surfactants in the curing process were identified for the first time. It was revealed that a distinct change in the physical properties of polyurethane foams take place when adding the surfactants.  相似文献   

9.
Foam superstabilization by polymer microrods   总被引:4,自引:0,他引:4  
Few foam systems stabilized by solid particles have been reported, and usually the particles have been used in combination with surfactants. We report how foams can be stabilized solely with a new class of anisotropic particles, hydrophobic polymer microrods of diameter less than 1 mum and length of a few tens of micrometers. The obtained foams were extraordinary stable, retaining a constant volume over many days and even surviving drying of most of the free liquid. The bubbles in these foams were sterically stabilized by dense thick "hairy" layers. The rigid intertwined protective shells around the bubbles did not allow the formation of thin films between them. The lifetime of these foams was orders of magnitude longer than the ones stabilized with typical foaming surfactants such as sodium dodecyl sulfate. The addition of sodium dodecyl sulfate led to hydrophilization of the microrods and suppressed the superstabilization effect. Thus, common foaming agents effectively act as defoamers for the ultrastable foams stabilized by microrods.  相似文献   

10.
We report on the successful use of particle-stabilized Medium Internal Phase Emulsion (MIPE) templates for the synthesis of porous polymer foams. In this case, carbon nanotubes (CNTs) were used to stabilize the minority phase as the continuous phase, through adsorption at the interface. The addition of the CNTs not only provides processing advantages (no need for traditional non-ionic molecular surfactants) but also enhances the mechanical and electrical properties of the final polyFoams. This approach allows the manufacture of both closed- and open-celled porous polymer foams in a one-pot process with porosities up to 66%.  相似文献   

11.
Foamed poly(vinyl alcohol) (PVA) cryogels are studied. Such heterogeneous gel composites are formed as a result of the cryogenic treatment (freezing—storage in a frozen state—thawing) of water— PVA liquid foams in the absence and presence of surfactants. It is shown that the addition of ionic and nonionic surfactants to an aqueous PVA solution and its subsequent foaming result in the formation of liquid foam whose stability is lower than that of the foam prepared from an aqueous PVA solution in the absence of surfactant, i.e., surfactants cause a destabilizing effect on the foams containing PVA. Gas-filled PVA cryogels formed as a result of freezing—thawing of such foams contain large (up to ~180 μm) pores (air bubbles incorporated into the matrix of heterogeneous gel). Mechanical and thermal properties of cryogels depend on the nature and concentration of surfactants, as well as on the regime of cryogenic treatment. The rigidity of foamed PVA cryogels prepared in the presence of sodium dodecyl sulfate and cetyltrimethylammonium bromide ionic surfactants is lower and that in the presence of nonionic decaoxyethylene cetyl ether is higher than for equiconcentrated (by the polymer) foamed PVA cryogel containing no surfactant. Microscopic studies and the analysis of obtained images of cryogel structure demonstrate that the effect of surfactant on the morphology of freezing foam can be different, depending on the type of surfactant added to the initial system. This leads to foam-destabilizing effects such as the collapse, deformation, and coalescence of air bubbles; the failure of gel phase structure near the bubble surface; etc. However, the complete disintegration of the foamed structure is prevented by a very high viscosity of the unfrozen liquid microphase of a macroscopically solid sample and by the cryotropic PVA gelation that fixes the structure of partially destroyed foam.  相似文献   

12.
Fluorinated surface-active agents [1] usually improve the qualities of multipurpose extinguishing foams, but they correlatively accelerate the water draining rate which weakens the resistance of the foam (due to the strong hydrophobic properties of the perfluoroalkyl chain). To overcome these problems we have synthesized new fluorinated surfactants (anionic, cationic or amphoteric) with an hydroxyl on Cα to the perfluoroalkyl chain.These surfactants have been incorporated into standard solutions and the properties of the foams were compared to those of comparable solutions containing only a hydrocarbon-based surfactant or a classic fluorinated surface- active agent (without the hydroxyl group). Results are discussed.  相似文献   

13.
Fatty acids are anionic surfactants under their deprotonated forms. They are surfactants with both biodegrability and low toxicity. Fatty acid molecules can self-assemble under various shapes in an aqueous solution. These self-assembled structures can respond to stimuli such as pH, CO2 and temperature due to changes occurring at the molecular level. These specificities make them surfactants of special interest to tune the properties at a macroscopic scale. The aim of this article is to review the recent advances in the creation and in the understanding of responsive self-assemblies obtained from fatty acid molecules in an aqueous solution. The links between the microscopic, mesoscopic and macroscopic scales are described. The alkyl chain melting phenomenon triggered by temperature at the molecular level leading to thermoresponsive interfaces and foams at the macroscopic scale is highlighted.  相似文献   

14.
Surface phase transitions in surfactant adsorption layers are known to affect the dynamic properties of foams and to induce surface nucleation in freezing emulsion drops. Recently, these transitions were found to play a role in several other phenomena, opening new opportunities for controlling foam and emulsion properties. This review presents a brief outlook of the emerging opportunities in this area. Three topics are emphasized: (1) the use of surfactant mixtures for inducing phase transitions on bubble surfaces in foams; (2) the peculiar properties of natural surfactants saponins, which form extremely viscoelastic surface layers; and (3) the main phenomena in emulsions, for which the surface phase transitions are important. The overall conclusion from the reviewed literature is that surface phase transitions could be used as a powerful tool to control many foam and emulsion properties, but we need deeper understanding of the underlying phenomena to fully explore these opportunities.  相似文献   

15.
16.
Several new foaming agent formulations (surfactants and polymers) in the presence of multi-walled carbon nanotube (MWCNT) were developed in 3% salinity (NaCl, 2.4?wt%, CaCl2, 0.6?wt%). The dispersion stability of the MWCNT and the viscosity of the solutions were examined as a prerequisite for reservoir applications. Foam was generated in situ and one-dimensional flow-through tests were performed by co-injecting air and foaming solution either in the presence of MWCNT or at particle-free condition. The pressure drop (Δp) across the sand-pack and the nanoparticles breakthrough were closely monitored. The fluid injection rate, gas fraction, and the effect of MWCNT on foams in porous media were investigated.

Our results reveal that foams stabilized by the selected nanoparticles are capable of generating stronger foams leading to higher apparent Δp. The Δp profile varies with gas fraction, which largely affects the foam texture and quality. Also, the viscosity of foaming agent solutions influences Δp values. Adding MWCNT to the foaming agent solutions appears beneficial to the flooding as surfactants adsorption onto nanoparticle surfaces, which facilitates surfactants partitioning to the G/L interface.

Addition of nanoparticles in the developed foam formulations leads to the formation of high-quality stronger foams in porous media, which could potentially improve the sweep efficiency and increase the oil recovery.  相似文献   

17.
戴乐蓉  厉锋 《应用化学》1989,6(6):79-82
泡沫体系的表面张力、粘度,表面粘度以及液晶相的存在对泡沫的稳定性皆有影响。消泡剂可改变上述性质。本文报导聚氧乙烯辛基酚(TritonX-100),十二烷基硫酸钠(SDS),油酸三乙醇胺(TEAOL)和卵磷脂等起泡剂在均相溶液及有液晶存在时产生泡沫的稳定性,观察硅油的消泡作用。  相似文献   

18.
Biomass-derived nanomaterials, such as cellulose nanocrystals and nanofibrils, are attractive building blocks for the formulation of foams, emulsions, suspensions and multiphase systems. Depending on their surface chemistry, aspect ratio and crystallinity, nanocelluloses can control the rheology and stability of dispersions; they can also confer robust mechanical properties to composites. Synthetic modification of fibrillar cellulose is an option to achieve chemical compatibility in related systems, in the formation of composites, etc. However, this can also limit the environmental benefits gained from the use of the cellulosic component. Thus, an attractive mean to compatibilize and to further expand the applications of nanocelluloses is through the use of surfactants. The chemical toolbox of surfactants developed over the last 60 years allows for a large versatility while their environmental impact can also be minimized. Furthermore, relatively small amounts of surfactants are sufficient to significantly impact the interfacial forces, which has implications in material development, from the colloidal scale to the macro-scale. In this review we attempt to cover the literature pertaining to the combined uses of surfactants and nanocelluloses. We summarize reports on the incorporation with nanocellulose of nonionic, anionic, amphoteric and cationic surfactants. With the ever-expanding interest in the use of renewable materials in a vast range of applications, we hope to provide insights into the application of surfactants as a tool to tailor the compatibility and the surface chemistry of nanocelluloses.  相似文献   

19.
Particles-stabilized foams have received more attention in recent years due to their specific characteristics and advantages in contrast to conventional foams which were stabilized with surfactants. However, the rheology of particles-stabilized foam in consolidated cores was rarely studied. To investigate the feasibility of the particles-stabilized foam application in enhanced oil recovery, the blocking ability and flowing characteristics of foam stabilized with clay particles were investigated by using experimental cores. To do this, the foam resistance factor was studied as an index in this article. The effects of foam quality (gas velocity divided by total velocity), injection rate of foam, and the permeability of cores on the blocking ability of foams were investigated. Results showed that the blocking ability reached the peak value at the foam quality of 0.74. This indicated effective blocking ability as conventional foams performed in porous media. Moreover, the foams block the channels more effectively in high permeability cores, compared with low permeability ones. Finally, foams displayed shear-thinning property in porous media as injection rate increased.   相似文献   

20.
We introduce a new class of Pickering foams which can be manipulated using a magnetic field. These foams are stabilized by a mixture of magnetic and nonmagnetic particles. They exhibit excellent stability in the absence of a magnetic field, but can be rapidly destroyed on demand with the application of a threshold field. We characterize their stability in the absence of a magnetic field by measuring the rate of water drainage from the foam as a function of time. We also correlate their collapse behavior under a magnetic field to the foam liquid fraction, as well as the concentration of magnetic particles in the foam. This novel system can be used to study the properties of Pickering foams, and has potential applications in noncontact defoaming processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号