首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A polyvinyl chloride (PVC) membrane based Pr(III) selective electrode was constructed using 1,6,7,12‐tetramine‐2,5,8,11‐tetraoxo‐1(12),6(7)‐di(biphenyl)dodecane (TATODBDD) as a neutral carrier. The sensor exhibits a Nernstian response for Pr(III) ions, a wide concentration range of 3.9×10?7?1.0×10?1 mol/L with a detection limit of 5.0×10?8 mol/L and slope of 19.5 mV/decade. The developed sensor revealed relatively good selectivity and high sensitivity for Pr(III) ions over the other lanthanide ions. The potentiometric response of the sensor is independent in the pH range 2.9–9.5. The advantages of sensor are low resistance, very fast response time (<10 s) with good selectivity. This sensor can be used up to 6 weeks without any divergences in potential response.  相似文献   

2.
Non‐heme high‐spin (hs) {FeNO}8 complexes have been proposed as important intermediates towards N2O formation in flavodiiron NO reductases (FNORs). Many hs‐{FeNO}8 complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non‐heme iron nitrosyl complex that is stabilized by an unexpected spin‐state change. Upon reduction of the hs‐{FeNO}7 complex, [Fe(TPA)(NO)(OTf)](OTf) ( 1 ), the N‐O stretching band vanishes, but no sign of DNIC or N2O formation is observed. Instead, the dimer, [Fe2(TPA)2(NO)2](OTf)2 ( 2 ) could be isolated and structurally characterized. We propose that 2 is formed from dimerization of the hs‐{FeNO}8 intermediate, followed by a spin state change of the iron centers to low‐spin (ls), and speculate that 2 models intermediates in hs‐{FeNO}8 complexes that precede the disproportionation reaction.  相似文献   

3.
A rapid magnetoimmunosensor for the simultaneous determination of two cardiac biomarkers, amino‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP) and C‐reactive protein (CRP), in human serum is described. Specific capture antibodies were covalently immobilized onto carboxylic acid‐modified magnetic beads. The quantification of NT‐proBNP and CRP was performed by using indirect competitive and sandwich configurations, respectively, and horseradish peroxidase‐labeled tracers. The use of dual screen‐printed carbon electrodes allowed the achievement of simultaneous independent amperometric readout for each cardiac biomarker. The developed methodology showed very low limits of detection (0.47 ng mL?1). An international standard for CRP serum spiked with NT‐proBNP was analyzed to evaluate the usefulness of the magnetoimmunosensor.  相似文献   

4.
We developed a dual‐target responsive sensor for label‐free light‐up fluorescent detection of protons (H+) and silver ions (Ag+) using an “OR′′ logic gate. Berberine, a cost‐effective and non‐toxic indicator, partially intercalates the formed triplex DNA in the presence of H+ or Ag+, generating enhanced fluorescence. The designed Ag+ probe has high selectivity and desirable sensitivity, which is necessary for practical use. The robust ”OR“ logic gate is capable of a rapid and reversible response to the H+ and/or Ag+ inputs.  相似文献   

5.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

6.
In this study, all‐solid‐state type potentiometric PVC membrane selective microsensor was developed for Metformin (MET) which is an antidiabetic drug active substance. Metformin‐tetraphenylborate (MET‐TPB) ion‐pair was used as an ionophore in the structure of the sensor membrane. It was determined that the sensor membrane at the ratio of 69 % o‐nitrophenyl octyl ether, 27 % polyvinyl chloride and 4 % MET‐TPB performed the best potentiometric performance. In a wide concentration range (1×10?5–1×10?1 mol/L), the slope, detection limit, response time, pH range, and life‐time of the sensor were determined as 55.9±1.6 mV (R2=0.996), 3.35×10?6 mol/L, 8–10 s, pH: 3–8, and ~10 weeks, respectively. The voltammetric performances of the sensor were also investigated. The prepared microsensor was successfully utilized for the determination of Metformin in a pharmaceutical drug sample by potentiometry and voltammetry. It was observed that the obtained results were in agreement with the results obtained by the UV spectroscopy method at 95 % confidence level.  相似文献   

7.
Pain measurement is commonly required in biomedical and other emergency situations, yet there has been no pain biosensor reported in literature. Conventional approaches for pain measurement relies on Wong‐Baker face diagrams, which are grossly inadequate for situations involving children or unconscious people. We report a label‐free immunosensor for monitoring the pain biomarker cylooxygenase‐2 (COX‐2) in blood. The sensor is based on the concept of metal‐enhanced detection (MED). MED relies on the idea that the immobilization of underpotential deposition (upd) metallic films deposited either as a monolayer or electrostatically held onto a solid gold substrate could significantly amplify bimolecular recognition such as involving antigen‐antibody (Ab‐Ag) interactions. The surface bound Ab‐Ag complex insulates the electrode; causing a decrease in concentration‐dependent redox signals. A linear detection range of (3.64–3640.00)×10?4 ng/mL was recorded with a detection limit of 0.25×10?4 ng/mL, which was 4 orders of magnitude lower than that reported for ELISA for the same biomarker. The immunosensor exhibited selectivity of less than 6 % for potential interferents.  相似文献   

8.
We have fabricated a highly sensitive, simple and label‐free single polypyrrole (Ppy) nanowire based conductometric/chemiresistive DNA sensor. The fabrication was optimized in terms of probe DNA sequence immobilization using a linker molecule and using gold‐thiol interaction. Two resultant sensor designs working on two different sensing mechanisms (gating effect and work function based sensors) were tested to establish reliable sensor architecture with higher sensitivity and device‐to‐device reproducibility. The utility of the work function based configuration was demonstrated by detecting 19 base pair (bp) long breast cancer gene sequence with single nucleotide polymorphism (SNP) discrimination with high sensitivity, lower detection limit of ∼10−16 M and wide dynamic range (∼10−16 to 10−11 M) in a small sample volume (30 µL). To further demonstrate the utility of the DNA sensor for detection of target sequences with different number of bases, targets with 21 and 36 bases were detected. These sequences have implications in environmental sample analysis or metagenomics. Sensor response showed increase with the number of bases in the target sequence. For long sequence (with 36 bases), effect of DNA alignment on sensor performance was studied.  相似文献   

9.
A potentiometric sensor for lead(II) ions based on the use of 1,4,8,11‐tetrathiacyclotetradecane (TTCTD) as a neutral ionophore and potassium tetrakis‐(p‐chlorophenyl)borate as a lipophilic additive in plasticized PVC membranes is developed. The sensor exhibits linear potentiometric response towards lead(II) ions over the concentration range of 1.0×10?5–1.0×10?2 mol L?1 with a Nernstian slope of 29.9 mV decade?1 and a lower limit of detection of 2.2×10?6 mol L?1 Pb(II) ions over the pH range of 3–6.5. Sensor membrane without a lipophilic additive displays poor response. The sensor shows high selectivity for Pb(II) over a wide variety of alkali, alkaline earth and transition metal ions. The sensor shows long life span, high reproducibility, fast response and long term stability. Validation of the method by measuring the lower limit of detection, lower limit of linear range, accuracy, precision and sensitivity reveals good performance characteristics of the proposed sensor. The developed sensor is successfully applied to direct determination of lead(II) in real samples. The sensor is also used as an indicator electrode for the potentiometric titration of Pb(II) with EDTA and potassium chromate. The results obtained agree fairly well with data obtained by AAS.  相似文献   

10.
We performed on‐plate enzyme and inhibition assays of glucose 6‐phosphate dehydrogenase using thin‐layer chromatography. The assays were accomplished based on different retardation factors of the substrates, enzyme, and products. All the necessary steps were integrated on‐plate in one developing process, including substrate/enzyme mixing, reaction starting, and quenching as well as product separation. In order to quantitatively measure the enzyme reaction, the developed plate was then densitometrically evaluated to determine the peak area of the product. Rapid and high‐throughput assays were achieved by loading different substrate spots and/or enzyme (and inhibition) spots in different tracks on the plate. The on‐plate enzyme assay could be finished in a developing time of only 4 min, with good track‐to‐track and plate‐to‐plate repeatability. Moreover, we determined the Km values of the enzyme reaction and Ki values of the inhibition (Pb2+ Cd2+ and Cu2+ as inhibitors), as well as the corresponding kinetics using the on‐plate assay. Taken together, our method expanded the application of thin‐layer chromatography in enzyme assays, and it could be potentially used in research fields for rapid and quantitative measurement of enzyme activity and inhibition.  相似文献   

11.
The detection of viruses is of interest for a number of fields including biomedicine, environmental science, and biosecurity. Of particular interest are methods that do not require expensive equipment or trained personnel, especially if the results can be read by the naked eye. A new “double imprinting” method was developed whereby a virus‐bioimprinted hydrogel is further micromolded into a diffraction grating sensor by using imprint‐lithography techniques to give a “Molecularly Imprinted Polymer Gel Laser Diffraction Sensor” (MIP‐GLaDiS). A simple laser transmission apparatus was used to measure diffraction, and the system can read by the naked eye to detect the Apple Stem Pitting Virus (ASPV) at concentrations as low as 10 ng mL−1, thus setting the limit of detection of these hydrogels as low as other antigen‐binding methods such as ELISA or fluorescence‐tag systems.  相似文献   

12.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

13.
New forms of transmissible spongiform encephalopathy (TSE) continue to be identified, and consequently sensitive differential diagnosis is increasingly important both for the management of disease in humans and livestock and in providing confidence in the safety of the food chain. TSE diseases are associated with accumulation of protease‐resistant prion protein (PrPSc) and detection of this marker protein is central to diagnosis. Proteolysis by proteinase K (PK) generates protease‐resistant products (PrPres) with partially variable N‐termini. The conformation(s) of PrPSc and thus the points of PK cleavage are thought to be dependent on the strain of prion disease. Western blot (WB) analysis of PrPres gives characteristic migration patterns that can be used to diagnose TSEs, but the relatively low resolution of this technique limits its ability to differentiate certain disease strains. Mass spectrometry (MS) has the capability to resolve these various PK cleavage sites to the level of individual amino acid residues. In the present study multiple selected reaction monitoring (mSRM) was used to detect and quantify PrPres N‐terminal tryptic peptides by MS and thus to define the N‐terminal amino acid profiles (N‐TAAPs) of PrPres characteristic for various TSEs in sheep. The fragmentation behaviour of the N‐terminal tryptic peptides was studied to allow selection of the transitions specific for each peptide. Different PrPres preparation methods were evaluated and the most effective approach applied to differentiate the N‐TAAPs corresponding to various sheep TSE isolates. Marked differences were identified between the N‐TAAPs of bovine spongiform encephalopathy (BSE) and classical scrapie, and between classical scrapie and the experimental strains SSBP/1 and CH1641, thereby validating this approach as a means of TSE‐strain specific diagnosis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

15.
《Electroanalysis》2006,18(9):888-893
A poly(vinyl chloride)‐based membrane of dimethyl 1‐acetyl‐8‐oxo‐2,8‐dihydro‐1H‐pyra‐zolo[5,1‐a]isoindole‐2,3‐dicarboxylate as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and 2‐nitrophenyl octyl ether (NPOE) as plasticizer was prepared and investigated as a Ba(II)‐selective electrode. The electrode exhibits a Nernstian slope of 29.7±0.4 mV per decade over a wide concentration range (1.0×10?6 to 1.0×10?1 M) with a detection limit of 7.6×10?7 M between pH 3.0 and 11.0. The response time of the sensor is about 10 s and it can be used over a period of 2 months without any divergence in potential. The proposed membrane sensor revealed good selectivity for Ba(II) over a wide variety of other metal ions. It was successfully used in direct determination of barium ions in industrial wastewater samples.  相似文献   

16.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

17.
《Electroanalysis》2017,29(11):2579-2590
In this study, an electrochemical sensor was developed and used for selective determination of bisfenol‐A (BPA) by integrating sol‐gel technique and multi‐walled carbon nanotubes (MWCNTs) modified paste electrode. BPA bounded by covalently to isocyanatopropyl‐triethoxy silane (ICPTS) was synthesized as a new precursor (BPA‐ICPTS) and then BPA‐imprinted polymer (BPA‐IP) sol‐gel was prepared by using tetramethoxysilane (TMOS) and BPA‐ICPTS. Non‐imprinted polymer (NIP) sol‐gel was obtained by using TMOS and (3‐Aminopropyl) triethoxysilane. Both BPA‐IP and NIP sol‐gels were characterized by nitrogen adsorption‐desorption analysis, FTIR, SEM, particle size analyzer and optical microscope. Carbon paste sensor electrode was fabricated by mixing the newly synthesized BPA‐IP with MWCNTs, graphite powder and paraffin oil. The electrochemical characterization of the sensor electrode was achieved with cyclic and differential pulse voltammetric techniques. The response of the developed sensor under the most proper conditions was linear in BPA concentration range from 4.0×10−9 to 1.0×10−7 mol L−1 and 5.0×10−7 to 5.0×10−5 mol L−1 and the detection limit was 4.4×10−9 mol L−1. The results unclosed that the proposed sensor displayed high sensitivity and selectivity, superior electrochemical performance and rapid response to BPA.  相似文献   

18.
Ligand L (4‐(7‐nitrobenzo[1,2,5]oxadiazole‐4‐yl)‐1,7‐dimethyl‐1,4,7,10‐tetra‐azacyclododecane) is a versatile fluorescent sensor useful for CuII, ZnII and CdII metal detection, as a building block of fluorescent metallo‐receptor for halide detection, and as an organelle marker inside live cells. Ligand L undergoes a chelation‐enhanced fluorescence (CHEF) effect upon metal coordination in acetonitrile solution. In all three complexes investigated the metal cation is coordinatively unsaturated; thus, it can bind secondary ligands as anionic species. The crystal structure of [Zn L Cl](ClO4) is discussed. CuII and ZnII complexes are quenched upon halide interaction, whereas the [Cd L ]2+ species behaves as an OFF–ON sensor for halide anions in acetonitrile solution. The mechanism of the fluorescence response in the presence of the anion depends on the nature of the metal ion employed and has been studied by spectroscopic methods, such as NMR spectroscopy, UV/Vis and fluorescence techniques and by computational methods. Subcellular localization experiments performed on HeLa cells show that L mainly localizes in spot‐like structures in a polarized portion of the cytosol that is occupied by the Golgi apparatus to give a green fluorescence signal.  相似文献   

19.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

20.
It remains challenging to prepare wearable strain and pressure sensors with excellent mechanical properties, ultra‐high flexibility and sensitivity. Electrically conductive graphene platelets (GnPs) with high structural integrity are used in making a composite film fabricated using robust fabrication techniques. The gauge factor for the strain is up to 100 at 0%‐5% strain and 50 at 5%‐30% strain, and the sensitivity to pressure is 2.7×10‐2 kPa‐1 between 0 and 10 kPa and 1.5×10‐4 kPa‐1 between 300 and 1000 kPa. In addition, the flexible sensor demonstrates good repeatability and durability after 1000 cycles of tensile and compression tests. The flexible sensor has fast response ability and a wide operating temperature range, suggesting the excellent response to temperature. The flexible sensor is applied in monitoring several human motions as a wearable device with high accuracy. The ability to detect strain, pressure and temperature of the flexible sensor extends its applications to multifunctional wearable devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号