共查询到20条相似文献,搜索用时 15 毫秒
1.
The G0 and G1 generations of optically active, multicenter 1,1′‐binaphthalene‐based dendritic ligands 4 and 5 constructed on a rigid oligo(arylene) framework were prepared by divergent synthesis. Their corresponding aluminum complexes 1 and 2 , respectively, were shown to possess slightly better reactivity and enantioselectivity than those of a monomeric 1,1′‐binaphthalene catalyst 3 in the Diels–Alder reaction between cyclopentadiene and 3‐[(E)‐but‐2‐enoyl]‐oxazolidin‐2‐one. 相似文献
2.
Dr. Konstantin Drandarov Dr. Ioannis Tiritiris Olga Wassiljew Prof. Dr. Hans‐Ullrich Siehl Prof. Dr. Willi Kantlehner 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(23):7224-7228
A method for the preparation of the first acetylenedicarboxamidinium salt from a bis‐orthoamide derivative of acetylenedicarboxyclic acid has been established. The salt reacted with cyclopentadiene and furan at room temperature to give bicyclic [4+2]‐cycloaddition products. The solid compounds were characterized by solution NMR spectroscopy and by single‐crystal X‐ray diffraction. Quantum‐chemical calculations of the isolated N,N,N′,N′,N′′,N′′,N′′′,N′′′‐octamethyl‐acetylene‐bis(carboxamidinium) ion showed very good agreement with the spectroscopic and diffraction data. 相似文献
3.
The protonation constants of adenosine 5′‐monophosphate, guanosine 5′‐monophosphate, and inosine 5′‐monophosphate were determined in binary mixtures of H2O containing 0, 10, 15, 20, 25, 30, 35, 40, 45, and 50% MeOH, using a combination of potentiometric and spectrophotometric methods at a constant temperature (25°) and constant ionic strength (0.1 mol?dm?3 NaClO4). The protonation constants were analyzed using the normalized polarity parameter (E ), and Kamlet, Abboud, and Taft (KAT) parameters. A linear correlation of log K vs. the normalized polarity parameter was obtained. Dual‐parameter correlation of log K vs. π* (dipolarity/polarizability) and α (H‐bond‐donor acidity), as well as π* and β (H‐bond‐acceptor basicity) also gives good results in various aqueous organic solvent mixtures. Finally, the results are discussed in terms of the effect of solvent on the protonation equilibria. 相似文献
4.
A straightforward high‐yield synthetic route to the cationic hydrido‐arene complexes [RuH(η6‐arene)(binap or MeO biphep)](CF3SO3), with a variety of arenes containing both donor and acceptor substituents, is described. 13C‐NMR Data for these complexes are reported. Several of these Ru‐complexes have been used as transfer‐hydrogenation catalysts in the reduction of acetophenone. 相似文献
5.
6.
7.
8.
9.
Valeska Gerhardt Michael Bolte 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(1):84-93
It is well known that pyrimidin‐4‐one derivatives are able to adopt either the 1H‐ or the 3H‐tautomeric form in (co)crystals, depending on the coformer. As part of ongoing research to investigate the preferred hydrogen‐bonding patterns of active pharmaceutical ingredients and their model systems, 2‐amino‐6‐chloropyrimidin‐4‐one and 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4‐one have been cocrystallized with several coformers and with each other. Since Cl and Br atoms both have versatile possibilities to interact with the coformers, such as via hydrogen or halogen bonds, their behaviour within the crystal packing was also of interest. The experiments yielded five crystal structures, namely 2‐aminopyridin‐1‐ium 2‐amino‐6‐chloro‐4‐oxo‐4H‐pyrimidin‐3‐ide–2‐amino‐6‐chloropyrimidin‐4(3H)‐one (1/3), C5H7N2+·C4H3ClN3O−·3C4H4ClN3O, (Ia), 2‐aminopyridin‐1‐ium 2‐amino‐6‐chloro‐4‐oxo‐4H‐pyrimidin‐3‐ide–2‐amino‐6‐chloropyrimidin‐4(3H)‐one–2‐aminopyridine (2/10/1), 2C5H7N2+·2C4H3ClN3O−·10C4H4ClN3O·C5H6N2, (Ib), the solvent‐free cocrystal 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one (1/1), C5H6BrN3O·C5H6BrN3O, (II), the solvate 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H6BrN3O·C5H6BrN3O·C5H9NO, (III), and the partial cocrystal 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one–2‐amino‐6‐chloropyrimidin‐4(3H)‐one (0.635/1/0.365), C5H6BrN3O·C5H6BrN3O·C4H4ClN3O, (IV). All five structures show R22(8) hydrogen‐bond‐based patterns, either by synthon 2 or by synthon 3, which are related to the Watson–Crick base pairs. 相似文献
10.
A novel sensitive and simple method for rapid and selective extraction, preconcentration and determination of uranyl as its 2,2′‐diamino‐4,4′‐bithiazole (DABTZ) complex by using octadecylsilica columns and spectrophotometry is presented. Extraction efficiency and the influence of flow rates of sample solution and eluent, pH, amount of DABTZ, type and least amount of eluent for elution of uranyl complex from columns, break‐through volume and limit of detection were evaluated. Also the effects of various cationic and anionic interferences on percent recovery of uranyl were studied. Average extraction efficiency of ca. 90% was obtained by elution of the column with minimal amount of solvent in the presence of interferences. The average preconcentration factor, 136 and a detection limit 0.32 ng·mL?1 were obtained. The method was applied to the recovery and determination of uranyl in different water samples. 相似文献
11.
Mateusz Piontek Bernd Morgenstern Nils Steinbrück Bastian Oberhausen Guido Kickelbick Kaspar Hegetschweiler 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(6):678-685
Liu et al. [Chin. J. Struct. Chem. (1996). 15 , 371–373] reported the structure of 6‐hydroxy‐1,4‐diazepane di(hydrogen bromide), C5H12N2O·2HBr, which was interpreted in terms of neutral diazepane and HBr molecules. We found, however, ample evidence that the formation of an organic salt, consisting of a diammonium cation and two bromide anions, is more plausible. This interpretation is also in agreement with thermogravimetric analysis and with the observed solution behaviour. The crystal structure of 6‐hydroxy‐1,4‐diazepane‐1,4‐diium dibromide, C5H14N2O2+·2Br?, measured at 142 K, crystallized in the orthorhombic space group P212121. The structure displays O—H…Br and N—H…Br hydrogen bonding. Contact distances are given. A search in the Cambridge Structural Database for the singly‐bonded H—Br moiety revealed a total of 69 structures. The question, whether these structures really include HBr as neutral molecules or rather Br? anions and a protonated substrate such as an amine, is addressed. 相似文献
12.
L. A. Koroleva V. K. Matveev A. V. Koroleva Yu. A. Pentin 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2018,92(3):488-495
The UV absorption spectrum of methacryloyl fluoride molecule in the gas phase is obtained in the wavenumber range of 32300–35900 cm?1. The resolved vibrational structure of this spectrum consists of 153 absorption bands. The assignment of all bands has been made for the first time. Values ν00trans = 35670.0 сm?1 and ν00cis = 35371.1 cm?1 are determined. The fundamental frequencies for isomers in the S0 and S1 states are found. Several Deslandres Tables (DTs) are constructed for the torsional vibration of the s-trans- and s-cis-isomers of the investigated molecule using the NONIUS program. The origins in these DTs correspond to bands attributed to ν00, and to the fundamental frequencies of each isomer in states S0 and S1. These DTs are used to determine harmonic frequencies ωe, anharmonicity coefficients х11, and the frequencies of torsional vibration 0–v transitions up to high values of vibrational quantum number v for s-trans- and s-cis-isomers in both electronic states. The frequencies of torsional vibrations for the s-trans-isomer and the s-cis-isomer in the S0 state are ν″1 = 80.9 сm?1 and ν″1 = 59.8 сm?1, respectively. The frequencies for the s-trans- isomer and the s-cis-isomer in the S1 state are ν′1 = 134.1 сm?1 and ν′1 = 103.6 cm?1, respectively. 相似文献
13.
Richard Hoogenboom Mark A. M. Leenen Frank Wiesbrock Ulrich S. Schubert 《Macromolecular rapid communications》2005,26(22):1773-1778
Summary: Investigations regarding the cationic ring‐opening polymerization of 2‐phenyl‐2‐oxazoline under microwave irradiation and conventional heating are reported. This study was inspired by contradictory reports of the (non‐)existence of non‐thermal microwave effects that might accelerate the cationic ring‐opening of 2‐oxazolines. The polymerization of 2‐phenyl‐2‐oxazoline was investigated under pressure in acetonitrile and under reflux (or at the boiling point of butyronitrile in a closed vessel) in butyronitrile utilizing a single‐mode microwave reactor and automated synthesis robots with conventional heating.
14.
A Reevaluation of the Photolytic Properties of 2‐Hydroxybenzophenone‐Based UV Sunscreens: Are Chemical Sunscreens Inoffensive? 下载免费PDF全文
Dr. Marta T. Ignasiak Prof. Dr. Chantal Houée‐Levin Dr. Gabriel Kciuk Prof. Dr. Bronislaw Marciniak Dr. Tomasz Pedzinski 《Chemphyschem》2015,16(3):628-633
The excited states of a set of popular sunscreen agents (2‐hydroxybenzophenone, oxybenzone, and sulisobenzone) are studied by using femto‐ and nanosecond time‐resolved spectroscopy. Upon excitation, the compounds undergo an ultrafast excited‐state intramolecular proton transfer (ESIPT) reaction as the major energy‐wasting process and the rate constant of this reaction is k=2×1012 s?1. The ESIPT yields a keto conformer that undergoes a fast, picosecond internal conversion decay. However, a photodegradative pathway is a monophotonic H?O bond breakage that subsequently leads to trace yields of phenoxyl radicals. Because potentially harmful phenoxyl radicals are formed upon irradiation of sunscreen agents, care should be taken about their reactivity towards biologically relevant compounds. 相似文献
15.
16.
17.
One‐ or Two‐Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium–Oxygen Batteries 下载免费PDF全文
Dr. Conrad L. Bender Dr. Daniel Schröder Dr. Ricardo Pinedo Prof. Philipp Adelhelm Prof. Jürgen Janek 《Angewandte Chemie (International ed. in English)》2016,55(15):4640-4649
Rechargeable lithium–oxygen and sodium–oxygen cells have been considered as challenging concepts for next‐generation batteries, both scientifically and technologically. Whereas in the case of non‐aqueous Li/O2 batteries, the occurring cell reaction has been unequivocally determined (Li2O2 formation), the situation is much less clear in the case of non‐aqueous Na/O2 cells. Two discharge products, with almost equal free enthalpies of formation but different numbers of transferred electrons and completely different kinetics, appear to compete, namely NaO2 and Na2O2. Cells forming either the superoxide or the peroxide have been reported, but it is unclear how the cell reaction can be influenced for selective one‐ or two‐electron transfer to occur. In this Minireview, we summarize available data, discuss important control parameters, and offer perspectives for further research. Water and proton sources appear to play major roles. 相似文献
18.
19.