首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Methionine (Met) is an essential sulfur‐containing amino acid, sensitive to oxidation. The oxidation of Met can occur by numerous pathways, including enzymatic modifications and oxidative stress, being able to cause relevant alterations in protein functionality. Under UV radiation, Met may be oxidized by direct absorption (below 250 nm) or by photosensitized reactions. Herein, kinetics of the reaction and identification of products during photosensitized oxidation were analyzed to elucidate the mechanism for the degradation of Met under UV‐A irradiation using pterins, pterin (Ptr) and 6‐methylpterin (Mep), as sensitizers. The process begins with an electron transfer from Met to the triplet‐excited state of the photosensitizer (Ptr or Mep), to yield the corresponding pair of radicals, Met radical cation (Met?+) and the radical anion of the sensitizer (Sens??). In air‐equilibrated solutions, Met?+ incorporates one or two atoms of oxygen to yield methionine sulfoxide (MetO) and methionine sulfone (MetO2), whereas Sens?? reacts with O2 to recover the photosensitizer and generate superoxide anion (O2??). In anaerobic conditions, further free‐radical reactions lead to the formation of the corresponding dihydropterin derivatives (H2Ptr or H2Mep).  相似文献   

2.
Starting from ethyl propionylacetate, and ethyl 2‐ethylacetoacetate we prepared 4‐propyl‐7,8‐, 4‐propyl‐6,7‐, 3‐ethyl‐4‐methyl‐7,8‐ and 3‐ethyl‐4‐methyl‐6,7‐dihydroxy‐2H‐chromenones which were allowed to react with the bis‐dihalides or ditosylates of glycols in DMF/Na2CO3 to afford the 6,7‐ and 7,8‐chromenone derivatives of 12‐crown‐4, 15‐crown‐4 and 18‐crown‐6. The products were identified using ir, 13C and 1H nmr, ms and high resolution mass spectroscopy. The cation selectivities of chromenone crown ethers with Li+, Na+ and K+ cations were estimated from the steady state emission fluorescence spectra of free and cation complexed chromenone macrocyclic ethers in acetonitrile.  相似文献   

3.
M. Laura Dántola 《Tetrahedron》2008,64(37):8692-8699
In vitiligo, a common skin disorder that produces white patches of depigmentation, 7,8-dihydropterins accumulate in the presence of high concentration of H2O2. In this work, we present a study of the reaction between 7,8-dihydropterins and H2O2. The rate of the reaction, as well as the products formed, strongly depend on the chemical structure of the substituents. Electron-donor groups as substituents are the most reactive derivatives and undergo oxidation of the pterin moiety. The corresponding bimolecular rate constants at 37 °C in neutral aqueous solutions are reported. The biological implications of the results obtained are also discussed.  相似文献   

4.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

5.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

6.
The structures of the title compounds, C15H13N3O4, (I), and C16H15N3O5 [IUPAC name: ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(3‐nitro­phenyl)‐4H‐pyrano‐3‐carboxyl­ate], (II), are very similar, with the heterocyclic rings adopting boat conformations. The pseudo‐axial m‐nitro­phenyl substituents are rotated by 84.0 (1) and 98.7 (1)° in (I) and (II), respectively, with respect to the four coplanar atoms of the boat. The dihedral angles between the phenyl rings and nitro groups are 12.1 (2) and 8.4 (2)° in (I) and (II), respectively. The two compounds have similar patterns of intermolecular N—H?O and N—H?N hydrogen bonding, which link mol­ecules into infinite tapes along b .  相似文献   

7.
A series of 3‐(4‐phenylisothiazol‐5‐yl)‐2H‐chromen‐2‐one ( 6a – l ) derivatives has been efficiently synthesized by straightforward sequential reactions. Tandem Vilsmeier Hack reaction/cyclization/bromination/Suzuki cross‐coupling reactions were successfully applied to the preparation of title compounds in good‐to‐high yields. In the synthetic sequences, 3‐chloro‐3‐(2‐oxo‐2H‐chromen‐3‐yl)acrylaldehydes ( 2 ) were found to react with ammonium thiocyanate to yield the corresponding 3‐(isothiazol‐5‐yl)‐2H‐chromen‐2‐ones ( 3 ). These derivatives were brominated with N‐bromo succinamide to yield the corresponding regioselective 3‐(4‐bromoisothiazol‐5‐yl)‐2H‐chromen‐2‐one ( 4 ). Finally, compound 4 was treated with various phenyl/pyrazole/7H –pyrrolo[2,3‐d]pyrimidinyl boronic acids 5a – l in the presence of K2CO3 and Pd catalyst in dimethylformamide to yield the corresponding title derivatives 6a – l . All the synthesized compounds were characterized by analytical and spectral studies. All the final compounds were screened against different cancer cell lines (A549, PC3, SKOV3, and B16F10), and among these compounds, 6b , 6g , 6h , and 6l displayed moderate cytotoxic activity against the tested cell lines.  相似文献   

8.
A quantum chemical study of several complex monocyclic 4‐benzoyl‐4‐phenyl‐β‐lactam derivatives was carried out using cyclobutane, azetidine, 2‐azetidinone, 1‐methyl‐2‐azetidinone, and 3‐methyl‐2‐azetidinone as model compounds. The optimum geometry was obtained for the different conformations. The planarity of the ring was discussed in terms of the influence of the substituents on the amide resonance. To better analyze the amide resonance and the activity of the β‐lactam ring, a vibrational study was also carried out. To examine the influence of solvent polarity on the carbonyl bands, the Fourier transform–infrared (FT‐IR) spectra of the β‐lactam monocyclic derivatives were recorded in CCl4, C6H6, and CHCl3 solutions. The normal vibrations of the β‐lactam ring in the model compounds were characterized and used in the analysis of the β‐ring of more complex derivatives. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

9.
Cellulose ( 1 ) was converted for the first time to 6‐phenyl‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 6 ) in 33% overall yield. Intermediates in the five‐step conversion of 1 to­ 6 were: 6‐O‐tritylcellulose ( 2 ), 6‐O‐trityl‐2,3‐di‐O‐methylcellulose ( 3 ), 2,3‐di‐O‐methylcellulose ( 4 ); and 6‐bromo‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 5 ). Elemental and quantitative carbon‐13 analyses were concurrently used to verify and confirm the degrees of substitution in each new polymer. Gel permeation chromotography (GPC) data were generated to monitor the changes in molecular weight (DPw) as the synthesis progressed, and the compound average decrease in cellulose DPw was ~ 27%. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the decomposition of all polymers. The degradation temperatures ( °C) and percent char at 500 °C of cellulose derivatives 2 to 6 were 308.6 and 6.3%, 227.6 °C and 9.7%, 273.9 °C and 30.2%, 200.4 °C and 25.6%, and 207.2 °C and 27.0%, respectively. The glass transition temperature (Tg) of­6‐O‐tritylcellulose by dynamic mechanical analysis (DMA) occurred at 126.7 °C and the modulus (E′, Pa) dropped 8.9 fold in the transition from ?150 °C to + 180 °C (6.6 × 109 to 7.4 × 108 Pa). Modulus at 20 °C was 3.26 × 109 Pa. Complete proton and carbon‐13 chemical shift assignments of the repeating unit of the title polymer were made by a combination of the HMQC and COSY NMR methods. Ultimate non‐destructive proof of carbon–carbon bond formation at C6 of the anhydroglucose moiety was established by generating correlations between resonances of CH26 (anhydroglucose) and C1′, H2′, and H6′ of the attached aryl ring using the heteronuclear multiple‐bond correlation (HMBC) method. In this study, we achieved three major objectives: (a) new methodologies for the chemical modification of cellulose were developed; (b) new cellulose derivatives were designed, prepared and characterized; (c) unequivocal structural proof for carbon–carbon bond formation with cellulose was derived non‐destructively by use of one‐ and two‐dimensional NMR methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Our approach to achieve a partial synthesis of methanopterin ( 1 ) started from 6‐acetyl‐O4‐isopropyl‐7‐methylpterin ( 20 ) which was obtained either by condensation from 6‐isopropoxypyrimidine‐2,4,5‐triamine ( 19 ) and pentane‐2,3,4‐trione ( 6 ) or from 6‐isopropoxy‐5‐nitrosopyrimidine‐2,4‐diamine ( 21 ) and pentane‐2,4‐dione (=acetylacetone; 22 ) (Scheme 2). NaBH4 reduction of 20 led to 6‐(1‐hydroxyethyl)‐O4‐isopropyl‐7‐methylpterin ( 23 ) which was converted into the corresponding 6‐(1‐chloroethyl) and 6‐(1‐bromoethyl) derivatives 24 and 25 . A series of nucleophilic displacement reactions in the side chain and at position 4 were performed as model reactions to give 26 – 29, 32 – 35 , and 39 – 41 . Hydrolysis of the substituents at C(4) led to the corresponding pterin derivatives 30, 31, 36 – 38 , and 42 . Analogously, 25 reacted with 1‐(4‐aminophenyl)‐1‐deoxy‐2,3: 4,5‐di‐O‐isopropylidene‐D ‐ribitol ( 43 ), prepared from N‐(4‐bromophenyl)benzamide ( 47 ) via 49 and 50 to give 1‐{4‐{{1‐[2‐amino‐7‐methyl‐4‐(1‐methylethoxy)pteridin‐6‐yl]ethyl}amino}phenyl}‐1‐deoxy‐D ‐ribitol ( 44 ) in 62% yield (Scheme 3). Acid cleavage of the isopropylidene groups at room temperature led to 45 and on boiling to 1‐{4‐{[1‐(2‐amino‐3,4‐dihydro‐7‐methyl‐4‐oxopteridin‐6‐yl)ethyl]amino}phenyl}‐1‐deoxy‐D ‐ribitol ( 46 ). The next step, however, attachment of the ribofuranosyl moiety with 55 or 56 to the terminal 1‐deoxy‐D ‐ribitol OH group could not been achieved. The second component, bis(4‐nitrobenzyl) 2‐{[(2‐cyanoethoxy)(diisopropylamino)phosphino]oxy}pentanedioate ( 61 ), to built‐up methanopterin ( 1 ) was synthesized from 2‐hydroxypentanedioic acid ( 59 ) and worked well in another model reaction on phosphitylation with N6‐benzoyl‐2′,3′‐O‐isopropylideneadenosine and oxidation to give 62 (Scheme 6).  相似文献   

11.
4‐Chlorocarbostyrils 3 , 12 , 17 , 24 , 26 with methoxy substituents in 6, 7, or 6,7‐position react with potassium cyanide in a p‐toluenesulfinate mediated reaction either to the highly fluorescent and stable 2‐oxoquinoline‐3,4‐dicarbonitriles 6 , 27 , 29 , 30 or at slightly lower temperatures to 4‐monocarbonitriles 5 , 13 , 18 . 4‐Chlorocarbostyril 3 and lithium p‐toluenesulfinate gave pure 4‐toluenesulfonylquinolone 4 , which reacted with potassium cyanide either to monocarbonitrile 5 or dicarbonitrile 6 , depending on the reaction conditions. 4‐Trifluoromethylquinolones 9 and 19 were prepared for fluorescence comparison from the appropriate methoxyaniline and 4,4,4‐trifluoroacetoacetate. The fluorescence properties such as emission wavelengths and quantum yields of 6‐methoxyderivatives 4 , 5 , 6 , 9 , 13 were studied and compared with those of 7‐methoxy derivatives 18 , 19 and 6,7‐dimethoxyderivatives 27 , 28 , 29 , 30 . 6,7‐Dimethoxy derivatives show best results, showing long‐waved fluorescence spectra up to 520 nm and acceptable quantum yields up to 0.46 for 3,4‐dicyano derivative 27 excited at 440 nm in acetonitrile.  相似文献   

12.
Biopterin (Bip) and its photoproducts 6‐formylpterin (Fop) and 6‐carboxypterin (Cap) accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder where the protection against UV radiation fails because of the lack of melanin. These compounds absorb in the UV‐A inducing a potential photosensitizing action that can cause damage to DNA and other biomolecules. In this work, we have investigated the capability of these pterin derivatives (Pt) to act as photosensitizers under UV‐A irradiation for the degradation of 2′‐deoxyadenosine 5′‐monophosphate (5′‐dAMP) in aqueous solutions, as model DNA target. Steady‐state and time‐resolved experiments were performed and the effect of pH was evaluated. The results showed that photosensitized degradation of 5′‐dAMP was only observed under acidic conditions, and a mechanistic analysis revealed the participation of the triplet excited state of the pterin derivatives (3Pt*) by electron transfer yielding the corresponding pair of radical ions (Pt?? and 5′‐dAMP?+), with successive photosensitizer recovery by electron transfer from Pt?? to O2. Finally, 5′‐dAMP?+ participates in subsequent reactions to yield degradation products.  相似文献   

13.
The unprecedented title reaction between glycine derivatives and indoles, as well as the auto‐oxidative Povarov/aromatization tandem reaction of glycine derivatives with olefins are described. The reactions were performed in the absence of redox‐active catalysts and chemical oxidants under mild reaction conditions. Only simple organic solvents and air (or O2) were required.  相似文献   

14.
In order to determine the impact of different substituents and their positions on intermolecular interactions and ultimately on the crystal packing, unsubstituted N‐phenyl‐2‐phthalimidoethanesulfonamide, C16H14N2O4S, (I), and the N‐(4‐nitrophenyl)‐, C16H13N3O6S, (II), N‐(4‐methoxyphenyl)‐, C16H16N3O6S, (III), and N‐(2‐ethylphenyl)‐, as the monohydrate, C18H18N2O4S·H2O, (IV), derivatives have been characterized by single‐crystal X‐ray crystallography. Sulfonamides (I) and (II) have triclinic crystal systems, while (III) and (IV) are monoclinic. Although the molecules differ from each other only with respect to small substituents and their positions, they crystallized in different space groups as a result of differing intra‐ and intermolecular hydrogen‐bond interactions. The structures of (I), (II) and (III) are stabilized by intermolecular N—H…O and C—H…O hydrogen bonds, while that of (IV) is stabilized by intermolecular O—H…O and C—H…O hydrogen bonds. All four structures are of interest with respect to their biological activities and have been studied as part of a program to develop anticonvulsant drugs for the treatment of epilepsy.  相似文献   

15.
Condensation reactions of the 5-amino-6-(subst. amino)-2,4-dithiouracils 12 and 13 with diacetyl or benzil led to the 6,7,8-trisubstituted 2,4-dithiolumazines 14 – 16 . Methylation of these compounds affected both thio functions forming various types of 2,4-bis(methylthio)lumazine derivatives depending on the nature of the substituents at C(7) and N(8). The 6,7,8-trimethyl-2,4-dithiolumazine ( 14 ) was converted into 7,8-dihydro-6,8-dimethyl–7-methylidene-2,4-bis(methylthio)pteridine ( 17 ), whereas the 8-methyl-6,7-diphenyl-(15) and the 8-(2-hydroxyethyl)-6,7-diphenyl-2,4-dithiolumazine ( 16 ) yielded the corresponding covalent inter- or intramolecular 7,8-adducts 18 – 21 . The unusual structures were proven by spectroscopic means and those of the alcohol adducts 20 and 21 , furthermore, confirmed by X-ray analysis.  相似文献   

16.
Based on 1H NMR spectral analysis combined with molecular simulation, conformational states of the cyclohexanone ring were studied for some 1R,4S‐2‐(4‐X‐benzylidene)‐p‐menthan‐3‐ones (X = COOCH3 or C6H5) in CDCl3 and C6D6. The co‐existence of chair conformers with an axial orientation of both alkyl substituents and twist‐boat forms was established for the compounds studied at room temperature (22–23° C). The substituent X does not influence appreciably the ratio of these conformers, but the fraction of twist‐boat forms increases noticeably in benzene solutions as compared with CDCl3 solutions. Rotameric states of the isopropyl fragment were also characterised for the compounds studied. Distinctions in conformational states for the 1R,4S‐2‐arylidene‐p‐menthan‐3‐ones and (?)‐menthone were revealed and are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Several derivatives belonging to a new compound class, namely azulene‐1‐azo‐2′‐thiazoles, were prepared by the diazotization of 2‐aminothiazoles in the presence of HNO3/H3PO4 followed by the coupling of diazonium salts with azulenes in buffered medium. The reactions proved to be general for this class, the yields are, however, considerably influenced by the substituents at thiazole moiety. For the first time a N‐oxide provided from an amino substituted five‐member nitrogenous heterocycle was diazotized and coupled. The structure of the obtained compounds was assigned and their physico‐chemical properties were discussed. The new azulene azo derivatives exhibit a strong bathochromic shift in UV‐Vis due to the intense push‐pull effect of aromatic system and to the intrinsic properties of thiazole moiety.  相似文献   

18.
A series of glycosylation and alkylation reactions of 6‐phenanthernyl‐2‐pyridone derivatives 1a , 1b containing electron withdrawing and electron donating substituents at 4‐position is reported. Regioselective 2‐O‐ alkylated/glycosylated products were obtained exclusively, irrespective of the electronic nature of alkylating or the glycosyling agent. Glycosylation of 1a , 1b with glucosyl/galactosyl and lactosyl bromides afforded 2a , 2b ; 4a , 4b ; and 6a , respectively. Alkylation of 1a , 1b with epichlorohydrin, propargyl, allyl bromides, and 3‐chloropropanol resulted in compounds 8 , 9 , 10 and 13 , respectively. Deprotection of O‐glycosylated products under conventional conditions provided the free glycosides 3a , 3b ; 5a , 5b ; 7a , 12 ; and 13 , respectively. The minimal inhibitory concentration for some of the newly synthesized compounds showed high significant activity against Gram (+ve) and Gram (−ve) and antifungal activities. Among the screened compounds, the 4‐trifluromethyl phenyl derivatives 2a , 3a , 4a , 8a , and 11a exhibited strong antimicrobial activity.  相似文献   

19.
Two new glycoluril derivatives, namely diethyl 6‐ethyl‐1,4‐dioxo‐1,2,2a,3,4,6,7,7b‐octahydro‐5H‐2,3,4a,6,7a‐pentaazacyclopenta[cd]indene‐2a,7b‐dicarboxylate, C14H21N5O6, (I), and 6‐ethyl‐2a,7b‐diphenyl‐1,2,2a,3,4,6,7,7b‐octahydro‐5H‐2,3,4a,6,7a‐pentaazacyclopenta[cd]indene‐1,4‐dione, C20H21N5O2, (II), both bearing two free syn‐urea NH groups and two ureidyl C=O groups, assemble the same one‐dimensional chains in the solid state running parallel to the [010] direction via N—H...O hydrogen bonds. Furthermore, the chains of (I) are linked together into two‐dimensional networks via C—H...O hydrogen bonds.  相似文献   

20.
Two novel poly(p‐phenylene vinylene) polymers, which carried side substituents with cyano groups or 1,3,4‐oxadiazole, were synthesized by Heck coupling. They consisted of alternating conjugated segments and nonconjugated aliphatic spacers. The polymers had moderate molecular weights, were amorphous, and dissolved readily in tetrahydrofuran and halogenated organic solvents. They were stable up to approximately 340 °C in N2 and 290 °C in air, and the anaerobic char yield was around 60% at 800 °C. The polymer with cyano side groups emitted blue light in solutions and thin films with identical photoluminescence (PL) maximum at 450 nm; this supported the idea that chain interactions were hindered even in the solid state. The PL maximum of this polymer in thin films was blueshifted upon annealing at 120 °C, indicating a thermochromic effect as a result of conformational changes in the polymer backbone. The polymer containing side substituents with oxadiazole rings emitted blue light in solutions with a PL maximum at 474 nm and blue‐greenish light in thin films with a PL maximum at 511 nm. The PL quantum yields of the polymers in tetrahydrofuran were 0.13–0.24. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1768–1778, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号