首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two‐dimensional (2D) layer CuII compound [Cu3(L)2(N3)4] ( 1 ) [L = 2‐amino‐3‐(5‐tetrazole)‐methyate‐N‐pyridine] was synthesized by in‐situ hydrothermal reaction of CuCl2 · 2H2O, NaN3, and 3‐(5‐tetrazole)‐methyate‐N‐pyridine. The central Cu1 and Cu2 atoms are located in five‐coordinate and six‐coordinate arrangements, respectively. Three CuII ions are linked by mixed double EO (end‐on)‐azido‐tetrazole bridges to give trinuclear CuII clusters, which are further extended by EE (end‐to‐end) azido bridges to form 2D metal‐organic layers. The magnetic exchange interactions in complex 1 were investigated by DFT calculations, and the calculated exchange interaction (J = –849 cm–1) revealed that the double EO‐azido‐tetrazole bridges transmit antiferromagnetic coupling between CuII ions.  相似文献   

2.
Two transition metal complexes with azide and 3,4-di(2′-pyridyl)-1,2,5-oxadiazole (dpo), [Cu2(dpo)2(N3)4] (1), and [Mn(dpo)2(N3)2] (2), have been synthesized and characterized by single-crystal X-ray diffraction. The Cu(II) complex is binuclear with double end-on (EO) azido bridges, in which each Cu(II) ion assumes a distorted square pyramidal geometry, and each EO azido bridge adopts a quasi-symmetric fashion. In contrast, the Mn(II) complex is mononuclear, in which the Mn(II) ion is ligated by two dpo ligands and two terminal azide ions, with a distorted octahedron geometry. Magnetic studies on the Cu(II) complex revealed that the double EO azido bridge mediates ferromagnetic coupling with J=12.8 cm−1.  相似文献   

3.
A new CuII–azide complex, {(C4H12N2)[Cu5(N3)12]·4H2O}n, has been synthesized by the reaction of piperazine, Cu(OAc)2·2H2O (OAc is acetate) and NaN3. In the structure, μ2‐1,1‐ and μ3‐1,1,1‐azide anions bridge five CuII cations to form a linear pentanuclear cluster unit, which is further linked by μ2‐1,1‐ and μ2‐1,3‐azide anions to form a two‐dimensional condensed [Cu5(N3)12]n layer. The diprotonated piperazine and the solvent water molecules are hydrogen bonded to the coordination layers to form a three‐dimensional supramolecular network.  相似文献   

4.
Three azide based compounds were synthesized employing aliphatic amines as site blocking agents: [Ni(N3)(C6H16N2)2]ClO4 ( I ) [C6H16N2 = N,N′‐diethylethylenediamine (DEDA)], [Cu8(N3)16(C6H18N4)2] ( II ) [C6H18N4 = tris(2‐aminoethyl) amine (TREN)], and [Cu7(N3)14(C7H19N3)2] · 2H2O ( III ) [C7H19N3 = 3,3′‐diamino‐N‐methyldipropylamine (DMDA)]. The compounds I and II have one‐dimensional structure and III has a two‐dimensional structure. Compound I is a simple linear cationic Ni–azide chain and compound II has Cu6 azide units forming a column terminated by the copper‐metalloligand generated in‐situ during the course of the reaction. The charge compensation perchlorate anions occupy spaces in between the chains in I . Compound II packs in a herringbone arrangement, which is not commonly observed in low‐dimensional structures. Compound III has one‐dimensional copper‐azide chains connected through copper‐metalloligand forming the two‐dimensional structure. All the three compounds exhibit anti‐ferromagnetic behavior.  相似文献   

5.
The azide anion is a short bridging ligand that has been used extensively to construct magnetic coordination polymers, and fundamental magneto‐structural correlations have been substantiated by theoretical calculations. The copper(II) coordination polymer poly[bis(μ‐azido‐κ2N1:N1)(μ4‐homophthalato‐κ4O:O′:O′′:O′′′)bis(pyridine‐κN)dicopper(II)], [Cu2(C9H6O4)(N3)2(C5H5N)2]n, was synthesized from homophthalic acid (2‐carboxyphenylacetic acid), pyridine and azide (N3) by a hydrothermal reaction. Single‐crystal structure analysis indicated that it features a one‐dimensional chain structure which is comprised of (μ1,1‐N3)(μ‐synsyn‐COO)2‐ and (μ1,1‐N3)2‐bridged tetranuclear CuII units. Magnetic measurements revealed that the compound exhibits dominant antiferromagnetic behaviour.  相似文献   

6.
The stable dinuclear [Cu(μ‐C2O4)Cu]2+ entity is facially coordinated at each end by a N‐nitrile functionalized triazamacrocycle, 1, 4, 7‐tris(cyanomethyl)‐1, 4, 7‐triazacyclononane ( L ), to generate a centrosymmetric compound [Cu2 L 2(μ‐C2O4)](ClO4)2 · 4DMF ( 1 ) containing a bis‐bidentate oxalate bridge. The variable‐temperature magnetic measurement for the crystallographically characterized compound exhibits quite strong antiferromagnetic coupling interaction between two oxalate‐linked CuII atoms separated by 5.149 Å with a singlet‐triplet energy gap of –345.5 cm–1. On the other hand, a mononuclear CoIII compound [Co L (N3)3] · 2.5H2O ( 2 ) with monodentate azide terminal groups was synthesized. Structural elucidation by X‐ray diffraction shows that the compound has crystallographically imposed C3 symmetry. Enantiomerically pure crystals were obtained upon crystallization indicated by a Flack parameter of 0.04(5).  相似文献   

7.
Azidocuprates(II). Crystal Structure of (PPh4)2[Cu2(N3)6] (PPh4)2[Cu(N3)4] and (PPh4)2[Cu2(N3)6], which is already known, are prepared from the corresponding chloro cuprates and excess silver azide in dichloro methane suspension. The azido cuprates form nonexplosive brown crystals of low sensitivity to moisture and are characterized by i.r. spectroscopy. (PPh4)2[Cu2(N3)6] was submitted to a X-ray crystallographic structural analysis (4284 observed, independent reflexions, R = 0.034). The compound crystallizes triclinic in the space group P1 with one formula unit per unit cell. The lattice parameters are a = 1047.4 pm; b = 1131.1 pm; c = 1179.4 pm; α = 101.26°; β = 109.31°; γ = 103.42°. The compound consists of PPh4 cations and centrosymmetric anions [Cu2(N3)6]2?, which meet D2h-symmetry fairly well. In the anions the copper atoms are linked to a planar Cu2N2 four-membered ring by the N α atoms of two azide groups. The other azido ligands are bonded terminally and complete coordination number 4 at the Cu atoms which show planar geometry.  相似文献   

8.
We report the synthesis, crystal structures, thermal and magnetic characterizations of a family of metal‐organic frameworks adopting the niccolite (NiAs) structure, [dmenH22+][M2(HCOO)62−] (dmen=N,N′‐dimethylethylenediamine; M=divalent Mn, 1Mn ; Fe, 2Fe ; Co, 3Co ; Ni, 4Ni ; Cu, 5Cu ; and Zn, 6Zn ). The compounds could be synthesized by either a diffusion method or directly mixing reactants in methanol or methanol–water mixed solvents. The five members, 1Mn , 2Fe , 3Co , 4Ni , and 6Zn are isostructural and crystallize in the trigonal space group P 1c, while 5Cu crystallizes in C2/c. In the structures, the octahedrally coordinated metal ions are connected by anti–anti formate bridges, thus forming the anionic NiAs‐type frameworks of [M2(HCOO)62−], with dmenH22+ located in the cavities of the frameworks. Owing to the Jahn–Teller effect of the Cu2+ ion, the 3D framework of 5Cu consists of zigzag Cu‐formate chains with Cu OCHO Cu connections through short basal Cu O bonds, further linked by the long axial Cu O bonds. 6Zn exhibits a phase transition probably as a result of the order–disorder transition of the dmenH22+ cation around 300 K, confirmed by differential scanning calorimetry and single crystal X‐ray diffraction patterns under different temperatures. Magnetic investigation reveals that the four magnetic members, 1Mn , 2Fe , 3Co , and 4Ni , display spin‐canted antiferromagnetism, with a Néel temperature of 8.6 K, 19.8 K, 16.4 K, and 33.7 K, respectively. The Mn, Fe, and Ni members show spin‐flop transitions below 50 kOe. 2Fe possesses a large hysteresis loop with a large coercive field of 10.8 kOe. The Cu member, 5Cu , shows overall antiferromagnetism (both inter‐ and intra‐chains) with low‐dimensional characteristics.  相似文献   

9.
A new two-dimensional polymeric copper(II) complex, [Cu2(heae)(N3)2] n , where heae stands for the dianion of N,N′-bis(N-hydroxyethylaminoethyl)oxamide, has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR, electronic spectral studies and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, P21/c space group with crystallographic data: a = 9.1588(18) Å, b = 6.6238(13) Å, c = 14.602(3) Å and Z = 2. The X-ray analysis reveals a two-dimensional copper(II) polymeric coordination network constructed by bis-tridentate chelated [Cu(trans-heae)Cu]2+ building blocks and end-on azido ligands. The environment around the copper(II) atom can be described as a square-based pyramid. The azido bridge is very asymmetric with one Cu–N bond distance short and the other long. The Cu ··· Cu separations through μ-trans-oxamidate and μ-azido bridges are 5.2996(13) Å and 4.2464(7) Å, respectively. The copper(II) complex is a polymer in the solid state, whereas in solution it exists as discrete neutral binuclear copper(II) species. Coordination mode of the azide in solution is proved by electronic spectra. The DNA-binding properties of the binuclear copper(II) species were investigated by emission spectral and electrochemical techniques, indicating the binuclear copper(II) complex binds to HS-DNA via a groove mode.  相似文献   

10.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

11.
The title compound, catena‐poly[[bis[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐di‐μ‐cyanido‐κ4N:C‐palladate(II)‐di‐μ‐cyanido‐κ4C:N] dibromide bis[[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐μ‐cyanido‐κ2N:C‐[dicyanidopalladate(II)]‐μ‐cyanido‐κ2C:N] monohydrate], {[Cu2Pd(CN)4(C6H15N3)2]Br2·[Cu2Pd2(CN)8(C6H15N3)2]·H2O}n, (I), was isolated from an aqueous solution containing tacn·3HBr (tacn is 1,4,7‐triazacyclononane), Cu2+ and tetracyanidopalladate(2−) anions. The crystal structure of (I) is essentially ionic and built up of 2,2‐electroneutral chains, viz. [Cu(tacn)(NC)–Pd(CN)2–(CN)–], positively charged 2,4‐ribbons exhibiting the composition {[Cu(tacn)(NC)2–Pd(CN)2–Cu(tacn)]2n+}n, bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one‐quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one‐dimensional structural motif within the same structure is a unique feature of this compound.  相似文献   

12.
The two complexes of formula [Cu2(CuL)2(μ‐N3)4] · 2CH3OH ( 1 ) and [Cu2(NiL)2(μ‐N3)4] · 2CH3OH ( 2 ) (CuL and NiL, H2L = 2,3‐dioxo‐5,6,14,15‐dibenzo‐1,4,8,12‐tetraazacyclo‐pentadeca‐7,13‐dien), were synthesized and structurally determined. The magnetic susceptibility data of 1 and 2 were analyzed. For complex 1 , magnetic measurements show alternating ferromagnetic and antiferromagnetic exchange couplings J1 = 23.67 cm–1, J2 = –189.11 cm–1, zJ’ = –0.62 cm–1. For complex 2 , the doubly bridged asymmetric EO promotes a ferromagnetic interaction between CuII and CuII ions(J = 40.764 cm–1).  相似文献   

13.
The title compound, diaqua‐1κO,3κO‐di‐μ‐hydroxido‐1:2κ2O:O,2:3κ2O:O‐di‐μ‐methacrylato‐1:2κ2O:O′,2:3κ2O:O′‐bis(1,10‐phenanthroline)‐1κ2N,N′;3κ2N,N′‐tricopper(II) dinitrate dihydrate, [Cu3(C4H5O2)2(OH)2(C12H8N2)2(H2O)2](NO3)2·2H2O, has the central Cu atom on an inversion centre. The three CuII atoms are in a linear arrangement linked by methacrylate and hydroxide groups. The coordination environments of the CuII ions are five‐coordinated distorted square‐pyramidal for the outer Cu atoms and four‐coordinated square‐planar for the central Cu atom. All nitrate ions, hydroxide groups and water molecules are linked by hydrogen bonds, forming a linear structure. The complex exhibits ferromagnetic exchange coupling, which is helpful in elucidating magnetic interactions between copper ions and other metallic ions in heteronuclear complexes.  相似文献   

14.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

15.
A new polymeric copper complex, viz.catena‐poly[[[μ‐N,N′‐bis(3‐amino­propyl)oxa­mid­ato‐κ6N,N′,O:N′′,N′′′,O′]­dicopper(II)]‐di‐μ‐dicyan­amido‐1:1′κ2N1:N5;2:2′κ2N1:N5], [Cu2(C8H16N4O2)(C2N3)2]n or [Cu(oxpn)0.5{N(CN)2}]n [where H2oxpn is N,N′‐bis(3‐amino­propyl)­ox­amide], has been ­synthesized by the reaction of Cu(oxpn), [Cu(ClO4)2]·6H2O and NaN3. In the crystal structure, the Cu atom is five‐coordinate and has a square‐pyrimidal (SP) configuration. In the polymer, dicyan­amide (dca) groups link CuII cations in a μ‐1,5‐bridging mode, generating novel ladders in which each step is composed of dimeric [Cu2(oxpn)]2+ cations. Abundant hydrogen bonds connect the polymer ladders into a two‐dimensional network structure.  相似文献   

16.
A new cobalt(II) coordination polymer containing 4,4′‐bipyridine and azide as bridging ligand, [CoII(4,4′‐bpy)(N3)2]n ( 1 ) was synthesized under mild hydrothermal conditions and was characterized by single‐crystal X‐ray diffraction studies and magnetic susceptibility measurements. It exhibits an acentric structure, in which cobalt(II) ions are linked through end‐to‐end (EE) azido groups. The 4,4′‐bpy ligands are coordinated on the axial positions of the octahedral environment reinforcing the intermetallic connections and resulting in a network. Circular dichroism spectra of the compound exhibit a maximum negative Cotton effect at 260 nm, which indicates the chiral nature of 1 . Variable temperature magnetic susceptibility measurements in the temperature range 2–300 K reveal the existence of antiferromagnetic couplings in the framework.  相似文献   

17.
Two acylhydrazone complexes, bis{6‐methyl‐N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O}nickel(II), [Ni(C13H12N5O)2], (I), and di‐μ‐azido‐κ4N1:N1‐bis({6‐methyl‐N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O}nickel(II)), [Cu2(C13H12N5O)2(N3)2], (II), derived from 6‐methyl‐N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL) and azide salts, have been synthesized. HL acts as an N,N′,O‐tridentate ligand in both complexes. Complex (I) crystallizes in the orthorhombic space group Pbcn and has a mononuclear structure, the azide co‐ligand is not involved in crystallization and the Ni2+ centre lies in a distorted {N4O2} octahedral coordination environment. Complex (II) crystallizes in the triclinic space group P and is a centrosymmetric binuclear complex with a crystallographically independent Cu2+ centre coordinating to three donor atoms from the deprotonated L? ligand and to two N atoms belonging to two bridging azide anions. The two‐ and one‐dimensional supramolecular structures are constructed by hydrogen‐bonding interactions in (I) and (II), respectively. The in vitro urease inhibitory evaluation revealed that complex (II) showed a better inhibitory activity, with the IC50 value being 1.32±0.4 µM. Both complexes can effectively bind to bovine serum albumin (BSA) by 1:1 binding, which was assessed via tryptophan emission–quenching measurements. The bioactivities of the two complexes towards jack bean urease were also studied by molecular docking. The effects of the metal ions and the coordination environments in the two complexes on in vitro urease inhibitory activity are preliminarily discussed.  相似文献   

18.
Herein we present a systematic study of the structures and magnetic properties of six coordination compounds with mixed azide and zwitterionic carboxylate ligands, [M(N3)2(2‐mpc)] (2‐mpc=N‐methylpyridinium‐2‐carboxylate; M=Co for 1 and Mn for 2 ), [M(N3)2(4‐mpc)] (4‐mpc=N‐methylpyridinium‐4‐carboxylate; M=Co for 3 and Mn for 4 ), [Co3(N3)6(3‐mpc)2(CH3OH)2] ( 5 ), and [Mn3(N3)6(3‐mpc)2] ( 6 ; 3‐mpc=N‐methylpyridinium‐3‐carboxylate). Compounds 1 – 3 consist of one‐dimensional uniform chains with (μ‐EO‐N3)2(μ‐COO) triple bridges (EO=end‐on); 5 is also a chain compound but with alternating [(μ‐EO‐N3)2(μ‐COO)] triple and [(EO‐N3)2] double bridges; Compound 4 contains two‐dimensional layers with alternating [(μ‐EO‐N3)2(μ‐COO)] triple, [(μ‐EO‐N3)(μ‐COO)] double, and (EE‐N3) single bridges (EE=end‐to‐end); 6 is a layer compound in which chains similar to those in 5 are cross‐linked by a μ3‐1,1,3‐N3 azido group. Magnetically, the three CoII compounds ( 1 , 3 , and 5 ) all exhibit intrachain ferromagnetic interactions but show distinct bulk properties: 1 displays relaxation dynamics at very low temperature, 3 is an antiferromagnet with field‐induced metamagnetism due to weak antiferromagnetic interchain interactions, and 5 behaves as a noninnocent single‐chain magnet influenced by weak antiferromagnetic interchain interactions. The magnetic differences can be related to the interchain interactions through π–π stacking influenced by different substitution positions in the ligands and/or different magnitudes of intrachain coupling. All of the MnII compounds show overall intrachain/intralayer antiferromagnetic interactions. Compound 2 shows the usual one‐dimensional antiferromagnetism, whereas 4 and 6 exhibit different weak ferromagnetism due to spin canting below 13.8 and 4.6 K, respectively.  相似文献   

19.
In the title three‐dimensional tetrazolate‐based coordination polymer, poly[bis(μ3‐cyanido‐κ3N:C:C)[μ5‐5‐(pyridin‐4‐yl)tetrazolato‐κ5N:N′:N′′:N′′′:N′′′′]tricopper(I)], [Cu3(C6H4N5)(CN)2]n, there are two types of coordinated CuI atoms. One type exhibits a tetrahedral environment and the other, residing on a twofold axis, adopts a trigonal coordination environment. The closest Cu...Cu distance is only 2.531 (2) Å, involving a bridging cyanide C atom. All four tetrazolate and the pyridine N atom of the 4‐(pyridin‐4‐yl)‐1H‐tetrazolate anion are coordinated to these CuI atoms and exhibit a μ5‐bridging mode. The three‐dimensional coordination network can be topologically simplified as a rarely observed (3,3,4,5)‐connected network with the Schläfli symbol (4.6.84)2.(42.6.87).(6.82)3.  相似文献   

20.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号