首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

2.
A series of new soluble poly(amide‐imide)s were prepared from the diimide‐dicarboxylic acid 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane with various diamines by direct polycondensation in N‐methyl‐2‐pyrrolidinone containing CaCl2 with triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.52–0.86 dL · g?1. The poly(amide‐imide)s showed an amorphous nature and were readily soluble in various solvents, such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, and cyclohexanone. Tough and flexible films were obtained through casting from DMAc solutions. These polymer films had tensile strengths of 71–107 MPa and a tensile modulus range of 1.6–2.7 GPa. The glass‐transition temperatures of the polymers were determined by a differential scanning calorimetry method, and they ranged from 242 to 279 °C. These polymers were fairly stable up to a temperature around or above 400 °C, and they lost 10% of their weight from 480 to 536 °C and 486 to 537 °C in nitrogen and air, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3498–3504, 2001  相似文献   

3.
Two new benzoxazole or benzothiazole‐containing diimide‐dicarboxylic acid monomers, such as 2‐[3,5‐bis(N‐trimellitimidoyl)phenyl]benzoxazole ( 2 o ) or 2‐[3,5‐bis(N‐trimellitimidoyl)phenyl]benzothiazole ( 2 s ) were synthesized from the condensation reaction between 3,5‐diaminobenzoic acid and 2‐aminophenol or 2‐aminothiophenol in polyphosphoric acid (PPA) with subsequent reaction of trimellitic anhydride in the presence of glacial acetic acid, respectively, and two new series of modified aromatic poly(amide‐imide)s were prepared. This preparation was done with pendent benzoxazole or benzothiazole units from the newly synthesized diimide‐dicarboxylic acid and various aromatic diamines by triphenyl phosphite‐activated polycondensation. In addition, the corresponding unsubstituted poly(amide‐imide)s were prepared under identical experimental conditions for comparative purposes. Characterization of polymers was accomplished by inherent viscosity measurements, FT‐IR, UV–visible, 1H‐NMR spectroscopy and thermogravimetry. The polymers were obtained in quantitative yields with inherent viscosities between 0.39 and 0.81 dl g?1. The solubilities of modified poly(amide‐imide)s in common organic solvents as well as their thermal stability were enhanced compared to those of the corresponding unmodified poly(amide‐imide)s. The glass transition temperature, 10% weight loss temperature, and char yields at 800°C were, respectively, 7–26°C, 17–46°C and 2–5% higher than those of the unmodified polymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A new cardo diamine monomer 3, 3‐bis‐[4‐{2′trifluoromethyl 4′‐(4″‐aminophenyl) phenoxy} phenyl]‐2‐phenyl‐2, 3‐dihydro‐isoindole‐1‐one ( 4 ) has been synthesized from potentially cheap phenolphthalein as the starting material. This diamine was used for the synthesis of a new poly(ether amide) and two co‐poly(ether amide)s using 4, 4′‐diaminodiphenyl ether (ODA) as co‐monomer by direct solution polycondensation with 5‐t‐butyl iso‐phthalic acid. These new polymers showed inherent viscosities of 0.48–0.62 dL g?1. The resulting poly(ether amide) and co‐poly(ether amide)s were readily soluble in polar aprotic solvents like NMP, DMF, DMAc, DMSO, and pyridine. The polymers have been fully characterized by 1H and 13C NMR, FTIR spectroscopy, and elemental analysis. These polymers showed glass transition temperatures in the range of 267–310°C. Thermogravimetric analysis indicated high thermal stability of these polymers at 5 and 10% weight loss temperature in air above 357°C and 419°C, respectively. The poly(ether amide) films cast from DMAc were flexible with tensile strength up to 91 MPa, elongations at break up to 11%, and modulus of elasticity up to 1.82 GPa. X‐ray diffraction measurements indicate the amorphous nature of the poly(ether amide)s. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Two series of phosphorus‐containing aromatic poly(ester amide)s with inherent viscosities of 0.46–3.20 dL/g were prepared by low‐temperature solution polycondensation from 1,4‐bis(3‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene and 1,4‐bis(4‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene with various aromatic diacid chlorides. All the poly(ester amide)s were amorphous and readily soluble in many organic solvents, such as N,N‐dimethylformamide, N,N‐dimethylacetamide (DMAc), and N‐methyl‐2‐pyrrolidone (NMP). Transparent, tough, and flexible films of these polymers were cast from DMAc and NMP solutions. Their casting films had tensile strengths of 71–214 MPa, elongations to break of 5–10%, and initial moduli of 2.3–6.0 GPa. These poly(ester amide)s had glass‐transition temperatures of 209–239 °C (m‐series) and 222–267 °C (p‐series). The degradation temperatures at 10% weight loss in nitrogen for these polymers ranged from 462 to 489 °C, and the char yields at 800 °C were 55–63%. Most of the poly(ester amide)s also showed a high char yield of 35–45%, even at 800 °C under a flow of air. The limited oxygen indices of these poly(ester amide)s were 35–46. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 459–470, 2002; DOI 10.1002/pola.10129  相似文献   

6.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

7.
A new family of wholly aromatic poly(urea‐ether‐imide)s ( 4a–4f ) possessing binaphthylene‐twisted rings was prepared by diphenyl azidophosphate (DPAP)‐activated one‐pot polyaddition reaction of a preformed imide heterocyclic ring‐containing dicarboxylic acid, 2,2′‐bis(4‐trimellitimidophenoxy)‐ 1,1′‐binaphthyl ( 1 ) with various kinds of aromatic diamines ( 3a–3f ). At first, with due attention to structural similarity and to compare the characterization data, a model compound 2 was synthesized by the reaction of diimide‐dicarboxylic acid 1 with two mole equivalents of aniline. In this direct method, the polymers were prepared by polyaddition reactions of the in situ‐formed diisocyanate with the aromatic diamines. Molecular weights of the poly(urea‐ether‐imide)s obtained were evaluated viscometrically, and the inherent viscosities (ηinh) measured were in the range 0.10– 0.25 dl/g. All of the polymers were characterized by FT‐IR spectroscopic method and elemental analysis. All of the resulting polymers exhibited an excellent solubility in common polar solvents such as N‐methyl‐2‐pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc). Crystallinity of the resulted polymers was evaluated by wide‐angle X‐ray diffraction (WXRD) method, and they exhibited nearly a non‐crystalline nature as evidenced by their diffractograms. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) thermograms were in the range of 274–302°C. The temperatures at 10% weight loss (Td10%) from their thermogravimetric analysis (TGA/DTG) curves were found to be in the range of 389–414°C in nitrogen atmosphere. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Two new aromatic poly(amide‐hydrazide)s (PAHs)‐bearing electroactive pyrenylamine units in the backbone were prepared from the phosphorylation polycondensation reactions of N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene ( 1 ) with p‐aminobenzoyl hydrazide (p‐ABH) and m‐aminobenzoyl hydrazide (m‐ABH), respectively. The PAHs could be further cyclodehydrated into the corresponding poly(amide‐1,3,4‐oxadiazole)s in the range of 300–400 °C in the solid film state. All the hydrazide and oxadiazole polymers were soluble in many polar organic solvents and could afford flexible and strong films via solution casting. The poly(amide‐1,3,4‐oxdiazole)s had high glass‐transition temperatures (294–309 °C) and high thermal stability (10% weight‐loss temperature in excess of 520 °C). The dilute solutions of all the hydrazide and oxadiazole polymers showed strong fluorescence with emission maxima around 457–459 nm in the blue region. Copolymers obtained from the polycondensation of equimolar mixture of diacid 1 and 4,4′‐oxydibenzoic acid with p‐ABH or m‐ABH exhibited a significantly increased fluorescence quantum efficiency in comparison with the homopolymers. Cyclic voltammetry results indicated that all the hydrazide and oxadiazole polymers exhibited an ambipolar (n‐ and p‐doping processes) and electrochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

9.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

10.
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on diphenyltrimellitic anhydride are described. The poly(aryl amide imide)s, having inherent viscosities of 0.39–1.43 dL/g in N-methyl-2-pyrrolidinone at 30°C, were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization. All the polymers were amorphous, readily soluble in aprotic polar solvents such as DMAC, NMP, dimethylsulfoxide, N,N-dimethylformamide, and m-cresol, and could be cast to form flexible and tough films. The glass transition temperatures were in the range of 284–366°C, and the temperatures for 5% weight loss in nitrogen were above 468°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4541–4545, 1999  相似文献   

11.
New fluorinated aromatic poly (ether ketone amide)s containing cardo structures were prepared by a heterogeneous palladium‐catalyzed polycondensation of fluorinated aromatic diiodides with ether ketone units, aromatic diamines containing cardo groups, and CO. Polymerizations were conducted in N,N‐dimethylacetamide at 120°C using 6 mol% of magnetic nanoparticles‐supported bidentate phosphine palladium (II) complex [Fe3O4@SiO2‐2P‐PdCl2] as catalyst and 1,8‐diazabicyclo[5,4,0]‐7‐undecene as base and resulted in fluorinated cardo poly (ether ketone amide)s with inherent viscosities up to 0.75 dL/g. All the polymers were readily soluble in many organic solvents and could afford transparent, flexible, and strong films by solution casting. These polymers showed good thermal stability with the glass transition temperature of 237°C–258°C, the temperature at 5% weight loss of 462°C–477°C in nitrogen. These polymer films also exhibited good mechanical properties, excellent electrical and dielectric performance, and high optical transparency. The incorporation of bulky fluorinated groups and cardo structures into polymer backbone has played an important role in the improvement of solubility, dielectric performance, and optical properties. Importantly, the heterogeneous palladium catalyst can easily be recovered from the reaction mixture by simply applying an external magnet and recycled up to 7 times without significant loss of catalytic activity.  相似文献   

12.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

13.
A dicarboxylic acid {1,1‐bis[4‐(4‐trimellitimidophenoxy)phenyl]‐1‐phenylethane ( II )} bearing two performed imide rings was prepared from the condensation of 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane and trimellitic anhydride in a 1/2 molar ratio. A novel family of poly(amide‐imide)s with inherent viscosities of 0.83–1.51 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid II with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. Because the 1,1,1‐triphenylethane group of II was unsymmetrical, most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N‐dimethylacetamide. All the soluble poly(amide‐imide)s afforded tough, transparent, and flexible films, which had tensile strengths ranging from 88 to 102 MPa, elongations at break from 6 to 11%, and initial moduli from 2.23 to 2.71 GPa. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures from 250 to 287 °C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses from 501 to 534 °C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 775–787, 2001  相似文献   

14.
A new triphenylamine‐containing aromatic dicarboxylic acid, N,N′‐bis(4‐carboxyphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was synthesized by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluorobenzonitrile, followed by the alkaline hydrolysis of the intermediate dinitrile compound. A series of novel triphenylamine‐based aromatic poly(amine amide)s with inherent viscosities of 0.50–1.02 dL/g were prepared from the diacid and various aromatic diamines by direct phosphorylation polycondensation. All the poly(amine amide)s were amorphous in nature, as evidenced by X‐ray diffractograms. Most of the poly(amine amide)s were quite soluble in a variety of organic solvents and could be solution‐cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with glass‐transition temperatures up to 280 °C, 10% weight‐loss temperatures in excess of 575 °C, and char yields at 800 °C in nitrogen higher than 60%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 94–105, 2003  相似文献   

15.
Polyaddition of bis(five‐membered cyclic dithiocarbonate), 2,2‐bis[4‐(1,3‐thioxolane‐2‐one‐4‐yl‐methoxy)phenyl]propane ( 1 ), with diamines having soft oligoether segments and property of the obtained poly(thiourethane)s were examined. Treatment of 1 with equivalent diamines in tetrahydrofuran at room temperature gave poly(thiourethane)s having a mercapto group in each unit, which were further treated with acetic anhydride and triethylamine to give the corresponding S‐acetylated poly(thiourethane)s in high yield. Exposing the mercapto group containing poly(thiourethane)s to benzoyl chloride and triethylamine provided the corresponding S‐benzoylated poly(thiourethane)s effectively. Thermal properties of the obtained polymers were evaluated by thermogravimetric analysis and differential scanning calorimetry. The obtained polymers showed 10 wt % loss temperature (Td10) in the range from 230 to 274 °C, which was relatively high when compared with the Td10 of an analogous polymer prepared from 1 and 1,6‐hexamethylenediamine. The polymers obtained here exhibited glass transition temperature (Tg) in the range from ?16 °C to 40 °C, which was much lower than the analogous polymer described above, probably due to the soft oligoether segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1076–1081  相似文献   

16.
A novel class of linear poly(dialkoxyphosphinyl-s-triazine)s were prepared by interfacial or solution polycondensation reactions of various diamines such as ethylenediamine, hexamethy-lenediamine or bis(4-aminocyclohexyl)methane with 2-dialkoxyphosphinyl-4,6-dichloro-s-triazines. The latter were synthesized by reacting cyanuric chloride with an equimolar amount of trialkyl phosphite. The phosphorous-containing polymers were characterized by inherent viscosity measurements as well as by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties of polymers were investigated by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Pyrolysis of all polymers was exothermic. Polymers were stable up to 150–200°C both in nitrogen and air atmosphere. They afforded 16–42% char yield at 700°C under anaerobic conditions.  相似文献   

17.
A new dialdehyde monomer, 4,4′‐(hexafluoroisopropylidine) bis(p‐phenoxy) benzaldehyde, was prepared; it led to a number of novel poly‐Schiff bases in reactions with different diamines, such as 4,4′‐diaminidiphenyl ether, 4,4′‐(isopropylidine) bis(p‐phenoxy) dianiline, 4,4′‐(hexafluoroisopropylidine) bis(p‐phenoxy) dianiline, and benzidine. The polymers were characterized with viscosity measurements, nitrogen analyses, and IR and 1H NMR spectroscopy. These poly‐Schiff bases showed good thermal stability up to 491 °C for 10% weight loss in thermogravimetric analysis under air and high glass‐transition temperatures up to 215 °C in differential scanning calorimetry. These polymers were soluble in a wide range of organic solvents, such as CHCl3, dimethylformamide (DMF), dimethyl sulfoxide, and 1‐methyl‐2‐pyrrolidon (NMP), and were insoluble in toluene and acetone. Thin films of these polymers cast from DMF exhibited tensile strengths up to 38 MPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 383–388, 2001  相似文献   

18.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

19.
Novel poly(enamine-ketones) were prepared with inherent viscosities as high as 1.99 dL/g using the Michael-type addition of various diamines to 1,1′-(1,3 or 1,4-phenylene)bis(3-phenyl-2-propyn-1-one) in m-cresol at 60–130°C. Tough, clear, amber films with tensile strengths of 12, 400 psi and tensile moduli of 397, 000 psi were cast from solutions of the polymers in chloroform. The polymers exhibited Tgs as high as 235°C and weight losses of 14% after aging at 232°C in circulating air for 60 h. The synthesis and characterization of several poly(enamine-ketones) are discussed.  相似文献   

20.
Aromatic poly(o-hydroxy amide)s having inherent viscosities of 0.6–2.2 dL/g were readily synthesized by the low-temperature solution polycondensation of N,N′,O-tris(trimethylsilyl)-substituted 2,4-diaminophenol with aromatic dicarboxylic acid chlorides in various organic solvents. The viscosity values were much higher than those of the polymers obtained by a conventional method using parent 2,4-diaminophenol. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide)s at 280°C under vacuum afforded the corresponding aromatic polyamide-benzoxazoles. Most of the poly(o-hydroxy amide)s dissolved readily in amide-type solvents, whereas the polyamide-benzoxazoles were quite insoluble in organic solvents. The polyamide-benzoxazoles, which gave yellow, transparent, and tough films, had glass transition temperatures of 260–300°C and were stable up to 400°C in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号