首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of a separation capillary for capillary electrophoresis (CE) with an on‐column enzyme reaction for selective determination of the enzyme substrate is described. Enzyme immobilization is achieved by electrostatic assembly of poly(diallydimethylammonium chloride) (PDDA) followed by adsorption of a mixture of the negatively charged enzyme glucose oxidase (GOx) and anionic poly(styrenesulfonate) (PSS). The reaction of glucose with the GOx produces hydrogen peroxide which migrates the length of the capillary and is detected amperometrically at the capillary outlet. The enzyme reaction occurs during a capillary separation, allowing selective determination of the substrate in complex samples without the need for pre‐ or post‐separation chemical modification of the analyte. The enzyme reactor is found to have an optimal response to glucose when a 5 : 1 mixture of PSS:GOx is used. Under these conditions the limit of detection for glucose is found to be between 5.0×10?4 and 1.3×10?3 M, dependent upon the inner‐diameter of the capillary. The apparent Michaelis‐Menten constant for the enzyme reaction was determined to be 0.047 (±0.001) M and 0.0037 (±0.0007) M for a 50 and 10 μm inner‐diameter capillaries, respectively. These results indicate that the enzyme reaction is efficient, having enzyme kinetics similar to that of a reaction occurring in solution. This enzyme immobilization method was also applied to another enzyme, glutamate oxidase, yielding similar results.  相似文献   

2.
《Electroanalysis》2002,14(23):1674-1678
Capillary zone electrophoresis with catalysis‐electrochemical detection has been developed and applied to determining horseradish peroxidase (HRP) at zeptomole levels. In this method, an on‐line enzyme catalysis reactor with a reaction capillary was designed. Isoenzymes of HRP were separated by capillary zone electrophoresis, and then they catalyzed the enzyme substrate 3,3′,5,5′‐tetramethylbenzide (TMB(Red)) and H2O2 in the reaction capillary. The reaction product, TMB(Ox), could be determined using amperometric detection on a carbon fiber microdisk bundle electrode at the outlet of the reaction capillary. Because of enzyme amplification, a significant amount of TMB(Ox) could be produced for detection. Therefore, the limit of detection (LOD) of HRP is very low. The optimum conditions of the method are 1.5×10?2 mol/L borate (pH 7.4) for the run buffer, 2×10?3 mol/L for the concentration of H2O2, 2×10?4 mol/L TMB(Red)+2.0×10?2 mol/L citrate‐phosphate (pH 5.0) for the substrate solution, 40 cm for the liquid pressure height, 20 kV for the separation voltage, 100 mV for the detection potential. HRP could be measured with a detection limit of 4.8×10?12 mol/L or 47.5 zmol (S/N=3). The linear range is from 2.40×10?11 to 2.40×10?8 mol/L. Using this method, commercial HRP was measured at zeptomole within ten minutes.  相似文献   

3.
《Analytical letters》2012,45(14):2883-2899
ABSTRACT|The catalytic activity of various mimetic enzymes instead of the peroxidase have been investigated by 4-aminoantipyrine (4-AAP) and 2, 3, 4-trichlorophenol (TCP) to form a dye utilizing hydrogen peroxide as hydrogen acceptor. The different Chlorophenolic derivatives, which act as a substrate in β-CD-hemin-H2O2-4-AAP catalytic reaction, have been systematically studied.|Meanwhile, the relationship of structure-effect for the β-CD-hemin as catalyst, and chlorphenols as substrate has been respectively discussed. The mechanism of catalytic reaction has been investigated. The results showed that β-CD-hemin was the best mimetic enzyme for peroxidase among those tested and TCP was a good substrate for the determination of hydrogen peroxide with β-CD-hemin. The method for the determination of hydrogen peroxide was proposed using 4-AAP-TCP system with β-CD-hemin as catalyst. A linear calibration graph was obtained over the H2O2 concentration of 4.8×10-?8-7.7×10-?5M, and the relative standard deviation at a H2O2 concentration of 2.8×10-?5M was 2.5%. The apparent molar absorptivity of the chromogenic reaction for H2O2 was 1.54× 104 L.mol-?1.cm?1. Satisfactory results were obtained in the determination of H2O2 in synthetic samples by this method.

Also, the method was coupled with the glucose oxidation reaction to determination glucose in human serum.  相似文献   

4.
《Electroanalysis》2004,16(9):774-778
A method for indirectly detecting yoctomole (ymol) alkaline phosphatase was developed by capillary electrophoresis with electrochemical detection. In this method, disodium phenyl phosphate was used as the enzyme substrate and the product (phenol) of its hydrolysis reaction catalyzed by alkaline phosphatase was detected at the carbon fiber electrode. The optimum conditions of detection are 1.0×10?2 mol/L Na2B4O7 (pH 9.8) for the running buffer; 1.00×10?3 mol/L disodium phenyl phosphate for the enzyme substrate; 20.0 kV for the separation voltage; 5 kV and 10 s for the injection voltage and injection time; 1.05 V (vs. saturated calomel electrode) for the detection potential and 10 min for the incubation time, respectively. In order to enhance the ratio of signal to noise, the shape and size of the working electrode, the shape of detection end of the capillary, and the capillary/electrode alignment method were studied in detail. When a single carbon fiber microcylinder electrode of 6 μm, a capillary of 10 μm ID with the etched detection end and the in‐capillary alignment were used, a ymol mass limit of detection for alkaline phosphatase was achieved.  相似文献   

5.
In this work, the development of a packed immobilized enzyme reactor (IMER) and its integration to a capillary electrophoresis microchip is described. The present microchip design differs from others, in the fact that the same design could be used with or without the particles and, just by changing the material used to pack the IMER, different analytes can be detected. The applied procedure involves the separation of the target analyte by capillary electrophoresis (CE), which is then coupled to a post‐column IMER that produces H2O2. The H2O2 produced is finally detected downstream at the surface of a working electrode. Glucose was detected above 100 μM by packing particles modified with glucose oxidase at the end of the separation channel. The analytical performance of the microchip‐CE has been demonstrated by performing the separation and detection of glucose and noradrenaline. Additions of fructose showed no effect on either the peak position or the peak magnitude of glucose. The microchip‐CE‐IMER was also used to quantify glucose in carbonated beverages with good agreement with other reports.  相似文献   

6.
Cytochrome P450 monooxygenase enzymes are versatile catalysts, which have been adapted for multiple applications in chemical synthesis. Mutation of a highly conserved active site threonine to a glutamate can convert these enzymes into peroxygenases that utilise hydrogen peroxide (H2O2). Here, we use the T252E-CYP199A4 variant to study peroxide-driven oxidation activity by using H2O2 and urea-hydrogen peroxide (UHP). We demonstrate that the T252E variant has a higher stability to H2O2 in the presence of substrate that can undergo carbon-hydrogen abstraction. This peroxygenase variant could efficiently catalyse O-demethylation and an enantioselective epoxidation reaction (94 % ee). Neither the monooxygenase nor peroxygenase pathways of the P450 demonstrated a significant kinetic isotope effect (KIE) for the oxidation of deuterated substrates. These new peroxygenase variants offer the possibility of simpler cytochrome P450 systems for selective oxidations. To demonstrate this, a light driven H2O2 generating system was used to support efficient product formation with this peroxygenase enzyme.  相似文献   

7.
The radical S‐adenosyl‐l ‐methionine (SAM) enzyme NosL catalyzes the transformation of l ‐tryptophan into 3‐methyl‐2‐indolic acid (MIA), which is a key intermediate in the biosynthesis of a clinically interesting antibiotic nosiheptide. NosL catalysis was investigated by using the substrate analogue 2‐methyl‐3‐(indol‐3‐yl)propanoic acid (MIPA), which can be converted into MIA by NosL. Biochemical assays with different MIPA isotopomers in D2O and H2O unambiguously indicated that the 5′‐deoxyadenosyl (dAdo)‐radical‐mediated hydrogen abstraction is from the amino group of l ‐tryptophan and not a protein residue. Surprisingly, the dAdo‐radical‐mediated hydrogen abstraction occurs at two different sites of MIPA, thereby partitioning the substrate into different reaction pathways. Together with identification of an α,β‐unsaturated ketone shunt product, our study provides valuable mechanistic insight into NosL catalysis and highlights the remarkable catalytic flexibility of radical SAM enzymes.  相似文献   

8.
Fe3O4 nanoparticles were deposited on sheets of graphene oxide (GO) by a precipitation method, and glucose oxidase (GOx) was then immobilized on this material to produce a GOx/Fe3O4/GO magnetic nanocomposite containing crosslinked enzyme clusters. The 3-component composite functions as a binary enzyme that was employed in a photometric method for the determination of glucose and hydrogen peroxide where the GOx/Fe3O4/GO nanoparticles cause the generation of H2O2 which, in turn, oxidize the substrate N,N-diethyl-p-phenylenediamine to form a purple product with an absorption maximum at 550 nm. The absorbance at 550 nm can be correlated to the concentration of glucose and/or hydrogen peroxide. Under optimized conditions, the calibration plot is linear in the 0.5 to 600 μM glucose concentration range, and the detection limit is 0.2 μM. The respective plot for H2O2 ranges from 0.1 to 10 μM, and the detection limit is 0.04 μM. The method was successfully applied to the determination of glucose in human serum samples. The GOx/Fe3O4/GO nanoparticles are reusable.
Figure
A one-step spectrophotometric method for the detection of glucose and/or H2O2 was developed by using GOx immobilized Fe3O4/GO MNPs as a bienzyme system and DPD as a substrate.  相似文献   

9.
The possibility of determining the Michaelis constant of the irreversible deamination of adenosine to inosine by adenosine deaminase, using capillary electrophoresis, was investigated. This paper describes the use of electrophoretically mediated microanalysis (EMMA) as the technique for carrying out the assay. Initial reaction velocities of the enzymatic reaction were estimated from the peak area of inosine, and the Michaelis constant was calculated according to the Lineweaver-Burk equation. The result (Km = 5.3 × 10−5 M ± 8 × 10−6 M) was consistent with previously reported values. Using the present method, a total amount of as few as 1.2 fmole of enzyme and 9.2 ng of substrate were injected in the capillary for the construction of a Michaelis Menten curve (seven concentrations of substrate, each concentration analyzed in triplicate), which is far smaller than the quantities required in conventional methods.  相似文献   

10.
Heme peroxidase are ubiquitous enzymes catalyzing the oxidation of a broad range of substrates by hydrogen peroxide. In this paper the bioelectrochemical characterization of horseradish peroxidase (HRP) and soybean peroxidase (SBP), belonging to class III of the plant peroxidase superfamily, was studied. The homogeneous reactions between peroxidases and some common redox mediators in the presence of hydrogen peroxide have been carried out by cyclic voltammetry. The electrochemical characterization of the reactions involving enzyme, substrate and mediators concentrations allowed us to calculate the kinetic parameters for the substrate–enzyme reaction (KMS) and for the redox mediator–enzyme reaction (KMM). A full characterization of the direct electron transfer kinetic parameters between the electrode and enzyme active site was also performed by opportunely modeling data obtained from cyclic voltammetry and square wave voltammetry experiments. The experimental data obtained with immobilized peroxidases show enhanced direct electron transfer and excellent electrocatalytical performance for H2O2. Despite the structural similarities and common catalytic cycle, HRP and SBP exhibit differences in their substrate affinity and catalytic efficiency. Basing on our results, it can be concluded that peroxidase from soybean represents an interesting alternative to the classical and largely employed one obtained from horseradish as biorecognition element of electrochemical mediated biosensors.  相似文献   

11.
In order to determine the kinetic parameters of glucose oxidation catalysed by the enzyme glucose oxidase (GO) the initial velocity of hydrogen peroxide formation was measured using a rotating disc electrode (RDE). The major advantage of this method is the possibility of continuous measurement of the increase in hydrogen peroxide concentration. This means that the real initial reaction rate V0 can be determined, which is required for constructing a double-reciprocal plot. Several combinations of substrate concentrations (glucose and oxygen) were used. The method, in which a platinum black RDE was used, appeared to be very useful. Product inhibition experiments showed that the ping-pong mechanism is valid for GO. The three kinetic parameters of this mechanism were determined by initial velocity experiments.  相似文献   

12.
A new photoelectrochemical method for the determination of glucose based on the photoelectrochemical effect of poly(thionine) photoelectrode to hydrogen peroxide (H2O2) was reported. The H2O2‐sensitive photoelectrode was fabricated by electropolymerizing thionine on the surface of ITO electrode. And then glucose oxidase was immobilized on the photoelectrode via the aid of chitosan enwrapping, forming an enzyme‐modified photoelectrode. The photoelectrode was employed as an electron acceptor; H2O2 from the catalytic reaction of enzyme was employed as an electron donor, developing an analytical method of glucose without hydrogen peroxidase. In the paper, the photoelectrochemical effects of photoelectrode to H2O2 and glucose were studied. The effects of the bias voltage and the electrolyte pH on the photocurrent were investigated. The linear response of glucose concentrations ranged from 0.05 to 2.00 mmol/L was obtained with a detection limit of 22.0 µmol/L and sensitivity of 73.2 nA/(mmol·L?1). The applied feasibility of method was acknowledged through monitoring the glucose in practical samples.  相似文献   

13.
A capillary electrophoresis method with in‐column light‐emitting diode induced fluorescence detection is described for simultaneous determination of D ,L ‐serine in the midbrain of a Parkinson's disease mouse. D ,L ‐Serine was derivatized with fluorescein isothiocyanate, and chiral separation and determination of D ,L ‐serine derivatives were performed on a laboratory‐built capillary electrophoresis system with in‐column light‐emitting diode induced fluorescence detector using γ‐cyclodextrin as chiral selector. Using this method, the levels of D ‐ and L ‐serine in the midbrains of Parkinson's disease mice were determined. When compared to controls, the levels of D ‐ and L ‐serine showed significant differences. The result suggested that the biosynthesis and the transportation of endogenous D ,L ‐serine may participate in Parkinson's disease pathogenesis.  相似文献   

14.
A long-life capillary enzyme bioreactor was developed that determines glucose concentrations with high sensitivity and better stability than previous systems. The bioreactor was constructed by immobilizing glucose oxidase (GOx) onto the inner surface of a 0.53 mm i.d. fused-silica capillary that was part of a continuous-flow system. In the presence of oxygen, GOx converts glucose to gluconic acid and hydrogen peroxide (H2O2). Hydrogen peroxide detection was accomplished using an amperometric electrochemical detector. The integration of this capillary reactor into a flow-injection (FIA) system offered a larger surface-to-volume ratio, reduced band-broadening effects, and reduced reagent consumption compared to packed column in FIA or other settings. To obtain operational (at ambient temp) and storage (at 4 °C) stability for 20 weeks, the glucose biosensing system was prepared using an optimal GOx concentration (200 mg/mL). This exhibited an FIA peak response of 7 min and a detection limit of 10 μM (S/N = 3) with excellent reproducibility (coefficient of variation, CV < 0.75%). It also had a linear working range from 101 to 104 μM. The enzyme activity in this proposed capillary enzyme reactor was well maintained for 20 weeks. Furthermore, 20 serum samples were analyzed using this system, and these correlated favorably (correlation coefficient, r2 = 0.935) with results for the same samples obtained using a routine clinical method. The resulting biosensing system exhibited characteristics that make it suitable for in vivo application.  相似文献   

15.
The dinuclear copper enzyme, tyrosinase, activates O2 to form a (μ‐η22‐peroxido)dicopper(II) species, which hydroxylates phenols to catechols. However, the exact mechanism of phenolase reaction in the catalytic site of tyrosinase is still under debate. We herein report the near atomic resolution X‐ray crystal structures of the active tyrosinases with substrate l ‐tyrosine. At their catalytic sites, CuA moved toward l ‐tyrosine (CuA1 → CuA2), whose phenol oxygen directly coordinates to CuA2, involving the movement of CuB (CuB1 → CuB2). The crystal structures and spectroscopic analyses of the dioxygen‐bound tyrosinases demonstrated that the peroxide ligand rotated, spontaneously weakening its O?O bond. Thus, the copper migration induced by the substrate‐binding is accompanied by rearrangement of the bound peroxide species so as to provide one of the peroxide oxygen atoms with access to the phenol substrate's ? carbon atom.  相似文献   

16.
L ‐2‐haloacid dehalogenase (L ‐DEX) catalyzes the hydrolytic dehalogenation of L ‐2‐haloalkanoic acids to produce the corresponding D ‐2‐hydroxyalkanoic acids. This enzyme is expected to be applicable to the bioremediation of environments contaminated with halogenated organic compounds. We analyzed the reaction mechanism of L ‐DEX from Pseudomonas sp. YL (L ‐DEX YL) by using molecular modeling. The complexes of wild‐type L ‐DEX YL and its K151A and D180A mutants with its typical substrate, L ‐2‐chloropropionate, were constructed by docking simulation. Subsequently, molecular dynamics (MD) and ab initio fragment molecular orbital (FMO) calculations of the complexes were performed. The ab initio FMO method was applied at the MP2/6‐31G level to estimate interfragment interaction energies. K151 and D180, which are experimentally shown to be important for enzyme activity, interact particularly strongly with L ‐2‐chloropropionate, catalytic water, nucleophile (D10), and with each other. Our calculations suggest that K151 stabilizes substrate orientation and balances the charge around the active site, while D180 stabilizes the rotation of the nucleophile D10, fixes catalytic water around D10, and prevents K151 from approaching D10. Further, D180 may activate catalytic water on its own or with K151, S175, and N177. These roles are consistent with the previous results. Thus, MD and ab initio FMO calculations are powerful tools for the elucidation of the mechanism of enzymatic reaction at the molecular level and can be applied to other catalytically important residues. The results obtained here will play an important role in elucidating the reaction mechanism and rational design of L ‐DEX YL with improved enzymatic activity or substrate specificity. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

17.
《Analytical letters》2012,45(13):2327-2339
Abstract

The application of capillary electrophoresis (CE) to the separation and determination of the two active ingredients, magnolol and honokiol, in Magnolia officinalis and its processed product was described. Optimum separation was achieved with a fused-silica capillary tube(60.5cm × 75μm I.D.) and a Na2B4O7-NaH2PO4 buffer(20 mmol/L) at pH=9.0 containing 20% of methanol. The applied voltage was 20 kV and the capillary thermostating temperature was kept constant at 25 deg;C.  相似文献   

18.
The phthalocyanine dyes, Remazol Turquoise Blue G133, Everzol Turquoise Blue and Heligon Blue S4 are found to be biosorbed by Phanerochaete chrysosporium (white-rot fungi) and also metabolised by its ligninolytic extracellular enzymes resulting in dye decolourisation, formation of free copper ions and organic metabolites with ultimate extensive phthalocyanine ring breakdown. It is believed that the ligninolytic extracellular enzyme laccase is involved in the early production of a metabolite M8 which involves break-up of the conjugated phthalocyanine ring structure but which retains multi-negative charge. Another ligninolytic extracellular enzyme, manganese peroxidase, is believed to be involved in the release of Cu2+ from the phthalocyanine structure to give a non-copper-containing phthalocyanine metabolite M1 with a slightly longer migration time than the parent dye and absorption at 666 nm. The phthalocyanine ring structure is also broken up by metabolic processes that involve desulphonation and oxidation to give phthalimide (M3) and an unidentified electroactive metabolite M2. Other minor, unidentified metabolites are observed using capillary electrophoresis and liquid chromatography.  相似文献   

19.
《Analytical letters》2012,45(7):555-564
Abstract

A novel biosensor, biophotodiode, is proposed for the determination of substances of biochemical and clinical importance. The biophotodiode is a unique combination of a photodiode and matrix-bound peroxidase. Since the enzyme catalyzes the luminescent reaction of the luminol-H2O2 system, this assembly is effective on the determination of hydrogen peroxide. The photocurrent of the sensor is correlated with the hydrogen peroxide concentration ranging from 1mM to 10 mM. A biophotodiode for glucose is also constructed by assembling a glucose oxidase-peroxidase bienzyme membrane and a photodiode.  相似文献   

20.
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1‐alkyl‐3‐methylimidazolium L ‐proline (L ‐Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers—dl ‐phenylalanine (dl ‐Phe), dl ‐histidine (dl ‐His), dl ‐tryptophane (dl ‐Trp), and dl ‐tyrosine (dl ‐Tyr)—were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (Rs)=3.26–10.81 for HPLC; Rs=1.34–4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L ‐Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L ‐Pro are consequently attached to the support surface, thus inducing an ion‐exchange type of retention for the dl ‐enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand‐exchange‐based chiral separation. It also reveals the tremendous application potential of this new type of task‐specific ILs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号