首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of Ni(dppe)Cl2 and syn-[DmpGe(SLi)(mu-S)2Ge(SLi)Dmp] prepared in situ from syn-[DmpGe(SH)(mu-S)2Ge(SH)Dmp] (1) and n-BuLi (2 equiv) afforded the Ge2NiS4 cluster, [DmpGe(mu-S)]2(mu-S)2Ni(dppe) (2) (Dmp = 2,6-dimesitylphenyl). The nickel in 2 assumes a slightly distorted square planar geometry. However, another Ge2NiS4 cluster, [DmpGe(mu-S)]2(mu-S)2Ni(PPh3)2 (3) obtained from a similar reaction with Ni(PPh3)2Cl2, contains the nickel in a tetrahedron. When 3 was heated to 120 degrees C in toluene, a novel Ge4Ni6S12 cluster [DmpGe(mu-S)3]4Ni6 (5) was obtained. In cluster 5, six nickels form an octahedron with the nickels occupying its vertexes, and four DmpGeS3 units cap half of the trigonal faces.  相似文献   

2.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c .  相似文献   

3.
A series of heteronuclear nickel‐iron complexes [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(PPh3)2}] ( 1 ), [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(dppe)}] ( 2 ), [Fe2(CO)63‐S)2{Ni(PPh3)2}] ( 3 ), [Fe2(CO)63‐S)2{Ni(dppe)}] ( 4 ) and [Fe2(CO)6(μ‐SPh)(μ3‐S){NiCl(dppe)}] ( 5 ) have been prepared. The structure of 4 has been determined by X‐ray crystallography. The central metal‐sulfur core of 4 has a trigonal bipyramidal shape with a NiFe2 base plane with two axial sulfur atoms. Each iron atom is 5‐coordinate forming a distorted square pyramid; the nickel is square planar coordinated by two sulfur atoms and two phosphorus atoms.  相似文献   

4.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

5.
(PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] – a Nitrido‐Thionitrosyl‐Dinitridosulfato‐Complex of Rhenium The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with excess N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals after recrystallisation from acetonitrile/THF solutions. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] ( 1 ): Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 1024.1(1), b = 2350.2(1), c = 2315.4(2) pm, β = 94.09(1)°, R1 = 0.0403. In the complex anion of 1 the rhenium atoms are connected by an asymmetric Re≡N–Re bridge as well as by a (NSN)4–‐bridge to form a planar Re2N(NSN) six‐membered heterocycle. Both rhenium atoms are coordinated by three chlorine atoms, one of them by a thionitrosyl ligand, the other one by the oxygen atom of a thf molecule.  相似文献   

6.
In the novel title binuclear zinc(II) Schiff base complex, bis­(μ‐11‐thio­semicarbazonoindeno[1,2‐b]quinoxaline‐8‐carboxylato)bis­[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide tri­solvate, [Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS, each ZnII atom is five‐coordinated and situated in a distorted square‐pyramidal environment, coordinated by two L2− ligands and one dimethyl sulfoxide mol­ecule. Each L2− ligand, which coordinates to two ZnII atoms, has two parts. One part, acting in a tridentate chelating mode, coordinates to one ZnII atom through two N atoms and one S atom, while another part coordinates to another ZnII atom through a monodentate carboxylate group. The whole complex has a dimeric structure. The coordination mode of the nearly planar L2− ligand is quite different from the most common mode for Schiff bases.  相似文献   

7.
The reduction of 2‐cyanopyridine by sodium in dry methanol in the presence of thiosemicarbazide produces 2‐pyridineformamide thiosemicarbazone, HAm4DH. The reactions of the potentially tridentate ligand HAm4DH with salts of Zn, Cd, and Hg gave a variety of metal‐ligand complexes. The complexes were characterized by mass spectrometry as well as IR and multinuclear NMR (1H, 13C, 13C CP/MAS, 113Cd, 199Hg) spectroscopy. The crystal structures of [Zn(Am4DH)(OAc)]2·H2O, [Hg(HAm4DH)2Br2]·C2H5OH and [Hg(μ‐S‐Am4DH)Br] were obtained. Coordination of anionic Am4DH? occurs through the pyridyl nitrogen, imine nitrogen and thiolato sulfur atoms, while the neutral ligands in [Hg(HAm4DH)2Br2] coordinate as monodentate ligands through their thione sulfur atoms. One of the acetate ligands in [Zn(Am4DH)(OAc)]2·H2O is bridging monodentate and the other bridging bidentate. [Hg(μ‐S‐Am4DH)Br] features five‐coordinate mercury centers with bridging thiolato sulfur atoms. The intermolecular arrangement is dictated by hydrogen bonding from the amino groups and by π‐π stacking of the pyridine rings.  相似文献   

8.
The preparation and characterization of three metal(II) chlorido complexes with 1,2‐di(1H‐tetrazol‐1‐yl)ethane (dte) ( 1 ) as ligand is presented. The complexes have the following formula: [CoCl2(μ‐dte)(dte)2]n ( 2 ), [CuCl2(μ‐dte)2]n ( 3 ), and [Cd(μ‐Cl)2(μ‐dte)]n ( 4 ). Single crystal X‐ray diffraction of all three metal complexes was performed and the structures are discussed. All three central metal atoms are connected to polynuclear structures by the μ‐bridging ligand. Cobalt and copper are connected to one‐dimensional chains. The central cadmium(II) atoms are additionally connected by the chloride anions to a two‐dimensional network. Further, the cobalt(II) complex represents a special case with two terminal dte ligands.  相似文献   

9.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

10.
The coordination properties of N,N′‐bis[4‐(4‐pyridyl)phenyl]acenaphthenequinonediimine (L1) and N,N′‐bis[4‐(2‐pyridyl)phenyl]acenaphthenequinonediimine (L2) were investigated in self‐assembly with palladium diphosphane complexes [Pd(P^P)(H2O)2](OTf)2 (OTf=triflate) by using various analytical techniques, including multinuclear (1H, 15N, and 31P) NMR spectroscopy and mass spectrometry (P^P=dppp, dppf, dppe; dppp=bis(diphenylphosphanyl)propane, dppf= bis(diphenylphosphanyl)ferrocene, and dppe=bis(diphenylphosphanyl)ethane). Beside the expected trimeric and tetrameric species, the interaction of an equimolar mixture of [Pd(dppp)]2+ ions and L1 also generates pentameric aggregates. Due to the E/Z isomerism of L1, a dimeric product was also observed. In all of these species, which correspond to the general formula [Pd(dppp)L1]n(OTf)2n (n=2–5), the L1 ligand is coordinated to the Pd center only through the terminal pyridyl groups. Introduction of a second equivalent of the [Pd(dppp)]2+ tecton results in coordination to the internal, sterically more encumbered chelating site and induces enhancement of the higher nuclearity components. The presence of higher‐order aggregates (n=5, 6), which were unexpected for the interaction of cis‐protected palladium corners with linear ditopic bridging ligands, has been demonstrated both by mass‐spectrometric and DOSY NMR spectroscopic analysis. The sequential coordination of the [Pd(dppp)]2+ ion is attributed to the dissimilar steric properties of the two coordination sites. In the self‐assembled species formed in a 1:1:1 mixture of [Pd(dppp)]2+/[Pd(dppe)]2+/L1, the sterically more demanding [Pd(dppp)]2+ tectons are attached selectively to the pyridyl groups, whereas the more hindered imino nitrogen atoms coordinate the less bulky dppe complexes, thus resulting in a sterically directed, size‐selective sorting of the metal tectons. The propensity of the new ligands to incorporate hydrogen‐bonded solvent molecules at the chelating site was confirmed by X‐ray diffraction studies.  相似文献   

11.
The Reactivity of Dinuclear Platina‐β‐diketones with Phosphines: Diacetylplatinum(II) Complexes and Mononuclear Platina‐β‐diketones Addition of mono‐ and bidentate phosphines or of AsPh3 to the platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) followed by the addition of NaOMe at ?70 °C resulted in the formation of diacetyl platinum(II) complexes cis‐[Pt(COMe)2L2] (L = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PPh2(4‐py), 2c ; PMePh2, 2d ; AsPh3, 2d ) and [Pt(COMe)2(L??L)] (L??L = dppe, 3b ; dppp, 3c ), respectively. The analogous reaction with dppm afforded the dinuclear complex cis‐[{Pt(COMe)2}2(μ‐dppm)2] ( 4 ) that reacted in boiling acetone yielding [Pt(COMe)2(dppm)] ( 3a ). The reactions 1 → 2 / 3 were found to proceed via thermally highly unstable cationic mononuclear platina‐β‐diketone intermediates [Pt{(COMe)2H}L2]+ and [Pt{(COMe)2H}(L??L)]+, respectively, that could be isolated as chlorides for L??L = dppe ( 5a ) and dppp ( 5b ). The reversibility of the deprotonation of type 5 complexes with NaOMe yielding type 3 complexes was shown by the protonation of the diacetyl complex 3b with HBF4 yielding the platina‐β‐diketone [Pt{(COMe)2H}(dppe)](BF4) ( 5c ). All compounds were fully characterized by means of NMR and IR spectroscopies, and microanalyses. X‐ray diffraction analysis was performed for the complex cis‐[Pt(COMe)2(PPh3)2]·H2O·CHCl3 ( 2a ·H2O·CHCl3).  相似文献   

12.
Synthesis and Crystal Structure of the Complexes [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 and [(n‐Bu)4N]2[Pd3Cl8] The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2 PdCl2] ( 1 ) is obtained in THF by the reaction of PdCl2(NCC6H5)2 with [(n‐Bu)4N][ReNCl4] in the molar ration 1:2. It forms orange crystals with the composition 1· THF crystallizing in the monoclinic space group C2/c with a = 2973.3(2); b = 1486.63(7); c = 1662.67(8)pm; β = 120.036(5)° and Z = 4. If the reaction is carried out with PdCl2 instead of PdCl2(NCC6H5)2, orange crystals of hitherto unknown [(n‐Bu)4N]2[Pd3Cl8] ( 3 ) are obtained besides some crystals of 1· THF. 3 crystallizes with the space group P1¯ and a = 1141.50(8), b = 1401.2(1), c = 1665.9(1)pm, α = 67.529(8)°, β = 81.960(9)°, γ = 66.813(8)° and Z = 2. In the centrosymmetric complex anion [{(THF)Cl4Re≡N}2PdCl2]2— a linear PdCl2 moiety is connected in trans arrangement with two complex fragments [(THF)Cl4Re≡N] via asymmetric nitrido bridges Re≡N‐Pd. For Pd(II) thereby results a square‐planar coordination PdCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 163.8(7)pm and Pd‐N = 194.1(7)pm. The crystal structure of 3 contains two symmetry independent, planar complexes [Pd3Cl8]2— with the symmetry 1¯, in which the Pd atoms are connected by slightly asymmetric chloro bridges. By the reaction of equimolar amounts of [Ph4P][ReNCl4] and PdCl2(NCC6H5)2 in THF brown crystals of the heterometallic complex, [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 ( 2 ) result. 2 crystallizes in the monoclinic space group P21/n with a = 979.55(9); b = 2221.5(1); c = 1523.1(2)pm; β = 100.33(1)° and Z = 2. In the central unit ClPd(μ‐Cl)2PdCl of the centrosymmetric anionic complex [(THF)Cl4Re≡N‐PdCl(μ‐Cl)]22— the coordination of the Pd atoms is completed by two nitrido bridges Re≡N‐Pd to nitrido complex fragments [(THF)Cl4Re≡N] forming a square‐planar arrangement for Pd(II). The distances in the linear nitrido bridges are Re‐N = 163.8(9)pm and Pd‐N = 191.5(9)pm.  相似文献   

13.
Three new oxime‐based palladacycles, namely [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppm)]ClO4 ( 1 ), [Pd2{C,N‐C6H4{C(Me)?NOH}‐2}2(dppe)2(μ‐dppe)](ClO4)2 ( 2 ) and [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppmS2)]ClO4 ( 3 ), were synthesized by the reaction of dinuclear oxime complex [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(μ‐Cl)]2 with different diphosphine ligands (dppm, dppe and dppmS2). The synthesized complexes were characterized using Fourier transform infrared, 31P NMR, 1H NMR and 13C NMR spectroscopic methods and elemental analyses, and their molecular structures were elucidated using X‐ray crystallography. The structure of 2 is worthy of note as it is the first oxime palladacycle where there are both bridging (P–) and chelating (P^P) dppe ligands, giving rise to a dinuclear complex. The palladium atom is in a five‐coordinate, square pyramidal P3NC environment, while in 3 the palladium atom is in a distorted square planar environment, coordinated by the oxime ligand and a chelating (S^S) dppmS2 ligand. These complexes were employed as efficient catalysts for the Suzuki–Miyaura cross‐coupling reaction of several aryl bromides with phenylboronic acid. The in vitro cytotoxicity of the compounds was also evaluated against human tumour cell lines (HT29, A549 and HeLa) using the MTT assay method. The results indicate that the dinuclear complex 2 has greater catalytic and anticancer activity in comparison with the mononuclear complexes 1 and 3 .  相似文献   

14.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

15.
Two palladium(II) complexes, [Pd(bipy)(BzPhe‐N,O)] and [Pd(phen)(BzPhe‐N,O)]·4H2O were synthesized by reactions between Pd(bipy)Cl2 and BzPheH2 (N‐benzoyl‐β‐phenylalanine), Pd(phen) Cl2 and BzPheH2 in water at pH‐9, with their structures determined by X‐ray diffraction analysis. The Pd atom is coordinated by two nitrogen atoms of bipy (or phen), the deprotonated amido type nitrogen atom and one of the carboxylic oxygens of BzPhe (BzPhe = N‐benzoyl‐β‐phenylalaninate dianion). In the complex [Pd(phen) (BzFne‐N,O)] · 4H2O, the side chain of phenylalanine is located above and approximately parallels to the coordination plane. Both the aromatic‐aromatic stacking interaction between the phenyl ring of phenylalanine and phen, and the metal ion‐aromatic interaction between the phenyl ring of phenylalanine and Pd(II) were observed. [Pd(bipy)(BzPhe‐N,O)] has the phenylalanyl side chain oriented outwards from the coordination plane, which is mainly due to the interaction between the carbonyl oxygen atom of the amido group and the phenyl ring of phenylalanine. The reason for the different orientation of phenylalanyl side chain in the complexes was suggested.  相似文献   

16.
Reduction of the cyclodiphosphazane [(S=)ClP(μ‐NtBu)]2 ( 1 ) with sodium metal in refluxing toluene proceeds via two different pathways. One is a Wurtz‐type pathway involving elimination of NaCl from 1 followed by head‐to‐tail cyclization to give the hexameric macrocycle [(μ‐S)P(μ‐NtBu)2P(=S)]6 ( 2 ). The other pathway involves reduction of the P=S bonds of 1 to generate colorless singlet biradicaloid dianion trans‐[S?P(Cl)(μ‐NtBu)]22?, which is observed in the polymeric structures of three‐dimensional [{(S?)ClP(μ‐NtBu)2PCl(S)}Na(Na ? THF2)]n ( 3 ) and two dimensional [{(S?)ClP(μ‐NtBu)2PCl(S)} (Na ? THF)2]n ( 4 ).  相似文献   

17.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

18.
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

19.
The title polymeric compound, catena‐poly­[dipotassium [bis­[μ‐N‐salicyl­idene‐β‐alaninato(2−)]‐κ4O,N,O′:O′′;κ4O′′:O,N,O′‐dicopper(II)]‐di‐μ‐iso­thio­cyanato‐κ2N:S2S:N], {K[Cu(NCS)(C10H9NO3)]}n, consists of [iso­thio­cyanato(N‐salicyl­idene‐β‐alaninato)copper(II)] anions connected through the two three‐atom thio­cyanate (μ‐NCS) and the two anti,anti‐μ‐­carboxyl­ate bridges into infinite one‐dimensional polymeric anions, with coulombically interacting K+ counter‐ions with coordination number 7 constrained between the chains. The CuII atoms adopt a distorted tetragonal–bipyramidal coordination, with three donor atoms of the tridentate Schiff base and one N atom of the bridging μ‐NCS ligand in the basal plane. The first axial position is occupied by a thio­cyanate S atom of a symmetry‐related μ‐NCS ligand at an apical distance of 2.9770 (8) Å, and the second position is occupied by an O atom of a bridging carboxyl­ate group from an adjacent coordination unit at a distance of 2.639 (2) Å.  相似文献   

20.
Reaction of the binuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 1 ) in toluene with the chelating ligands Ph2PCH2PPh2 (dppm) and Ph2PCH2CH2PPh2 (dppe) gives different results. With dppm only the complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppm)] ( 3 ) with a dangling ligand is obtained under replacement of amine, whereas with dppe depending on the reaction conditions up to three compounds are found. A 1 : 1 mixture of the educts generates the related complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppe)] ( 4 ) together with the tetranuclear complex [{(CO)3Fe(μ‐Me2NCO)2Fe(CO)2}2(dppe)] (5 ). 4 slowly converts into [(CO)3Fe(μ‐Me2NCO)2Fe(CO)(dppe)] ( 6 ) with dppe acting as a chelating ligand. 6 is the first compound in this series in which one of the five CO groups is replaced by another donor. A 2 : 1 molar ratio of 1 and dppe quantitatively produces 5 . Addition of CO to a solution of 6 proceeds under slow reversible conversion of the complex into 4 . The compounds were characterized by the usual spectroscopic methods; 3 , 5 and 6 were also studied by X‐ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号