首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cu(2)S nanocrystals with disklike morphologies were synthesized by the solventless thermolysis of a copper alkylthiolate molecular precursor. The nanodisks ranged from circular to hexagonal prisms from 3 to 150 nm in diameter and 3 to 12 nm in thickness depending on the growth conditions. High resolution transmission electron microscopy (HRTEM) revealed the high chalcocite (hexagonal) crystal structure oriented with the c-axis ([001] direction) orthogonal to the favored growth direction. This disk morphology is thermodynamically favored as it allows the extension of the higher energy [100] and [110] surfaces with respect to the [001] planes. The hexagonal prism morphology also appears to relate to increased C-S bond cleavage of adsorbed dodecanethiol along the more energetic [100] facets relative to [001] facets. Monodisperse Cu(2)S nanodisks self-assemble into ribbons of stacked platelets. This solventless approach provides a new technique to synthesize anisotropic metal chalcogenide nanostructures with shapes that depend on both the face-sensitive thermodynamic surface energy and the surface reactivity.  相似文献   

2.
For plasmonic copper-deficient Cu2−xS nanoparticles (NPs), accurate control of the crystal phase and morphology is highly desirable as both of which are known to determine the localized surface plasmon resonance (LSPR) wavelength and amplitude. Here, how the sulfur precursor reactivity in the synthesis of Cu2−xS NPs affects the resulting crystal phase and morphology is examined. Djurleite Cu1.94S, roxbyite Cu1.8S, digenite Cu1.8S as well as covellite CuS nanodisks were synthesized by using 1-dodecanethiol, N,N-dibutylthiourea, and crystal sulfur 1-octadecene/oleylamine solutions and their crystal phase dependent LSPR properties were exhaustively discussed. In addition, crystal phase interconversion between covellite CuS and djurleite/roxbyite Cu2−xS was realized in the presence of the above sulfur precursors. On the other hand, djurleite Cu1.94S nanorods rather than nanodisks were prepared by replacing 1-dodecanethiol with more reactive tert-dodecanethiol. The structural and morphological Cu2−xS NPs here holds great promise in the application of photothermal therapy, photocatalysis, surface-enhanced Raman scattering (SERS), and many others.  相似文献   

3.
Chen YB  Chen L  Wu LM 《Inorganic chemistry》2005,44(26):9817-9822
Monodisperse silver nanodisks are synthesized on the gram scale from a well-characterized layered silver thiolate precursor via thermolysis at 180-225 degrees C under a N(2) atmosphere. XRD, TEM, HRTEM, and AFM analyses indicate that the nanodisks generated at 180 degrees C over 2 h have an average diameter of about 16.1 nm (sigma = +/-12%) and a thickness of 2.3 nm (sigma = +/-14%), and they lie on their (111) faces. The disk shape is considered to be predestined by the crystal structure of the precursor. Important aspects regarding the stability of the precursor, the thermolysis temperature, and the annealing time, as well as a possible conversion mechanism, are discussed.  相似文献   

4.
Cu2S nanoparticles were electrosynthesized by cyclic voltammetry between 0.10 and 1.50 V in the presence of polyvinylalcohol as stabilizer. The structure and nature of the resulting Cu2S poly (vinyl alcohol) composite were characterized by transmission electron microscopy and X-ray diffraction. The results show that electrochemically synthesized Cu2S nanoparticles are homogeneously dispersed and well separated from one another with a mean diameter of about 12 nm.  相似文献   

5.
A crucial parameter in the design of semiconductor nanoparticles (NPs) with controllable optical, magnetic, electronic, and catalytic properties is the morphology. Herein, we demonstrate the potential of additive metal cations with variable valency to direct the morphology evolution of copper-deficient Cu2−xS nanoparticles in the process of seed-mediated growth. In particular, the djurleite Cu1.94S seed could evolve from disk into tetradecahedron in the presence of tin(IV) cations, whereas they merely formed sharp hexagonal nanodisks with tin(II) cations. In addition to djurleite Cu1.94S, the tin(IV) cations could be generalized to direct the growth of roxbyite Cu1.8S and covellite CuS nanodisk seeds into tetradecahedra. We further perform pseudomorphic cation exchanges of Cu1.94S tetradecahedra with Zn2+ and Cd2+ to produce polyhedral zinc sulfide (ZnS) and cadmium sulfide (CdS) NPs. Moreover, we achieve Cu1.8S/ZnS and Cu1.94S/CdS tetradecahedral heterostructures via partial cation exchange, which are otherwise inaccessible by traditional synthetic approaches.  相似文献   

6.
One-dimensional (1D) cuprite (Cu2O) nano-whiskers with diameter of 15-30 nm are obtained from liquid deposition method at 25 °C by adding a surfactant, cetyl trimethyl ammonium bromide (CTAB), as a template. TEM and HRTEM show that the nano-whiskers exhibit a well-crystallized 1D structure of more than 200 nm in length, and confirms that the nano-whiskers grow mainly along the 〈111〉 direction. Moreover, there are many pores in the nano-whiskers, which is beneficial for the photocatalysis under visible light. When polyethylene glycol (PEG), glucose and sodium dodecylbenzenesulfonate (SDS) are used as templates, 1D structures cannot be obtained. According to the TEM images of the compound obtained at different stages during the growth of the Cu2O nano-whiskers, it is found that the role of CTAB is to interact with tiny Cu(OH)2, which can adsorb OH and become negative charged, to disperse the tiny Cu(OH)2 solid and to induce the growth of Cu2O along the 1D direction. Although CTAB is significant for the preparation of the 1D nanomaterials, ion character of the precursor (Cu(OH)2·OH or Cu2+) is important as well since there is no nano-whiskers obtained with Cu2+ as the precursor. Moreover, the probable mechanism of the formation for the porous structure is discussed.  相似文献   

7.
The hydrochemical precipitation method at 298 and 333 K with, respectively, thiocarbamide and sodium selenosulfate was used to obtain nanostructured powders of copper sulfide with formula composition Cu2S, which are composed of globules 200–500 nm in diameter, formed by 70–100-nm particles, and copper(I) selenide, composed of crystallites with polyhedral shape, sizes of 80 to 500 nm, and a formula composition Cu1.84Se. An X-ray diffraction analysis revealed the orthorhombic Cu2S structure (space group no. 39-Abm2) with unit cell parameters a = 1.182 nm, b = 2.705 nm, and c = 1.343 nm. Powders of Cu1.84Se copper selenide have a cubic structure (space group Fm3m) with lattice constant a = 0.5693 nm. A thermal analysis demonstrated that the chemically precipitated Cu2S and Cu1.84Se powders have a stable elemental composition up to 200–240°C. An intense oxidation of the samples begins at a temperature exceeding 250°C and is accompanied by a sharp decrease in their content of sulfur (selenium) and by an increase in the content of oxygen.  相似文献   

8.
A Cu‐based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite‐like precursor, which was prepared by co‐precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.5Zn0.17Al0.33)(OH)2(CO3)0.17] ? mH2O precursor is transferred into a carbonate‐modified, amorphous mixed oxide. The calcined catalyst can be described as well‐dispersed “CuO” within ZnAl2O4 still containing stabilizing carbonate with a strong interaction of Cu2+ ions with the Zn–Al matrix. The reduction of this material was carefully analyzed by complementary temperature‐programmed reduction (TPR) and near‐edge X‐ray absorption fine structure (NEXAFS) measurements. The results fully describe the reduction mechanism with a kinetic model that can be used to predict the oxidation state of Cu at given reduction conditions. The reaction proceeds in two steps through a kinetically stabilized CuI intermediate. With reduction, a nanostructured catalyst evolves with metallic Cu particles dispersed in a ZnAl2O4 spinel‐like matrix. Due to the strong interaction of Cu and the oxide matrix, the small Cu particles (7 nm) of this catalyst are partially embedded leading to lower absolute activity in comparison with a catalyst comprised of less‐embedded particles. Interestingly, the exposed Cu surface area exhibits a superior intrinsic activity, which is related to a positive effect of the interface contact of Cu and its surroundings.  相似文献   

9.
以Cu2S中空球为反应性模板, 通过在水溶液中与银离子的阳离子交换和氧化还原反应制备了大小均匀的Ag2S中空球-Ag纳米粒子异质结构, 即Ag2S-Ag异质中空球. 该异质结构中每个Ag2S中空球的直径约为600 nm, 壁厚约20–30 nm, 其表面均附着一个Ag纳米粒子. 采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和能量色散X射线谱(EDS)对所得Ag2S-Ag异质中空球的结构和组成进行了表征. 若以CuS中空球为反应性模板, 在相似转化条件下则主要得到不含Ag粒子的Ag2S中空球. 该结果表明, Cu2S中的Cu(I)的还原性在Ag2S-Ag异质中空球的形成中发挥了重要作用. 通过对所制备的Ag2S-Ag异质中空球进行二次生长, 还可以得到Ag2S中空球的半球表面均被Ag膜所包覆的Ag2S-Ag异质中空球.  相似文献   

10.
Synthesis and assembly of monodisperse spherical Cu2S nanocrystals   总被引:1,自引:0,他引:1  
High-quality monodisperse Cu2S nanocrystals (sizes from 2 nm to 20 nm) have been successfully synthesized by the reaction of copper stearate (CuSt2) and dodecanethiol (DDT) in 1-octadecene (ODE). The nanocrystals were characterized using X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), and transmission electron microscopy (TEM). These as-prepared Cu2S nanocrystals with certain sizes have been found with good self-assembly behaviors, and they were easily to assemble into two-dimensional and three-dimensional superlattice structures. DDT served as both sulfur source and capping ligand, and was found a key factor to affect the growth and the self-assembly behaviors of the Cu2S nanocrystals.  相似文献   

11.
A facile method for the low‐cost and large‐scale production of ultralong Ag2S (or Ag2Se)? ZnSe quantum wires has been developed. ZnSe quantum wires (diameter≈4 nm) with high uniformity in their crystal structure and diameter can be synthesized by using a catalyst‐assisted growth approach with Ag2S nanoparticles as a catalyst. The influence of the growth temperature, time, and type of catalytic particle on the morphology of the ZnSe quantum wires was systematically explored. Besides Ag2S, Ag2Se nanoparticles can also be adopted as the catalyst for the growth of ZnSe wires. This method can also be applied to the fabrication of uniform CdSe nanorods. This method is convenient for the controllable fabrication of metal selenides and is of importance for exploring fundamental nanoscale semiconductor physics, as well as for affording technological devices with optimized characteristics.  相似文献   

12.
A facile strategy has been developed to synthesize double‐shelled Zn(OH)2 nanoflowers (DNFs) at room temperature. The nanoflowers were generated via conversion of Cu2O nanoparticles (NPs) using ZnCl2 and Na2S2O3 by a simple process. Outward diffusion of the Cu2+, produced by an oxidation process on the surface of NPs, and the inward diffusion of Zn2+ by coordination and migration, eventually lead to a hollow cavity in the inner NPs with a double‐shelled 3D hollow flower shapes. The thickness of the inner and outer shells is estimated to be about 20 nm, and the thickness of nanopetals is about 7 nm. The nanoflowers have large surface areas and excellent adsorption properties. As a proof of potential applications, the DNFs exhibited an excellent ability to remove organic molecules from aqueous solutions.  相似文献   

13.
Semiconducting nanosheets with microscale lateral size are attractive building blocks for the fabrication of electronic and optoelectronic devices. The phase‐controlled chemical synthesis of semiconducting nanosheets is of particular interest, because their intriguing properties are not only related to their size and shape, but also phase‐dependent. Herein, a facile method for the synthesis of phase‐pure, microsized, two‐dimensional (2D) CuSe nanosheets with an average thickness of approximately 5 nm is demonstrated. These hexagonal‐phased CuSe nanosheets were transformed into cubic‐phased Cu2?xSe nanosheets with the same morphology simply by treatment with heat in the presence of CuI cations. The phase transformation, proposed to be a template‐assisted process, can be extended to other systems, such as CuS and Cu1.97S nanoplates. Our study offers a new method for the phase‐controlled preparation of 2D nanomaterials, which are not readily accessible by conventional wet‐chemical methods.  相似文献   

14.
使用L-半胱氨酸作为连接剂, 利用硼氢化钠原位还原预先吸附在介孔氧化亚铜表面的氯金酸根离子,得到了Au/Cu2O异质结构. 应用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征, 并以λ>400 nm的可见光作为光源, 评价了该催化剂光催化降解亚甲基蓝(MB)的活性. 实验结果表明, 直径为4 nm的金颗粒完好地负载在介孔氧化亚铜的表面, 并且介孔氧化亚铜的细微结构与孔径均未发生变化. 研究表明, 以乙醇作为反应溶剂有效抑制了AuCl4-与Cu2O之间的氧化还原反应, 从而有利于氧化亚铜介孔结构的保持及金颗粒的原位还原. 光催化降解亚甲基蓝的结果表明, Au/Cu2O异质结构的光催化活性比纯氧化亚铜光催化活性有明显提高. 推测其光催化性能提高的主要原因如下: 一方面, 金颗粒良好的导电性有利于氧化亚铜表面电子的快速转移, 实现电子-空穴分离; 另一方面, 金颗粒可能存在的表面等离子共振现象加速了光生电子的产生.  相似文献   

15.
Temperature programmed desorption (TPD) and density functional theory (DFT) are used to investigate adsorption sites and reaction of coadsorbed NO and CO on planar Ir(210) and faceted Ir(210) with tailored sizes of three‐sided nanopyramids exposing (311), (31${\bar 1}$ ) and (110) faces. Both planar and faceted Ir(210) are highly active for reduction of NO by CO with high selectivity to N2, which is accompanied by simultaneous oxidation of CO. Evidence is found for structure sensitivity in adsorption sites and reaction of coadsorbed NO and CO on faceted Ir(210) versus planar Ir(210). Strong interaction between NO and CO at high NO exposure and one‐monolayer CO pre‐coverage results in “explosive” evolution of N2 and CO2 on planar Ir(210) and size effects in reduction of NO by CO on faceted Ir(210) for average facet size ranging from 5 to 14 nm without change in facet structure.  相似文献   

16.
Morphology evolution of sulfonic acid functionalized organosilica nanohybrids (Si(Et)Si‐Pr/ArSO3H) with a 1D tubular structure (inner diameter of ca. 5 nm), a 2D hexagonal mesostructure (pore diameter of ca. 5 nm), and a 3D hollow spherical structure (shell thickness of 2–3 nm and inner diameter of ca. 15 nm) was successfully realized through P123‐templated sol–gel cocondensation strategies and fine‐tuning of the acidity followed by aging or a hydrothermal treatment. The Si(Et)Si‐Pr/ArSO3H nanohybrids were applied in synthesis of alkyl levulinates from the esterification of levulinic acid and ethanolysis of furfural alcohol. Hollow spherical Si(Et)Si‐Pr/ArSO3H and hexagonal mesoporous analogues exhibited the highest and lowest catalytic activity, respectively, among three types of nanohybrids; additionally, the activity was influenced by the ?SO3H loading. The activity differences are explained in terms of different Brønsted acid and textural properties, reactant/product diffusion, and mass transfer rate, as well as accessibility of ?SO3H sites to the reactant molecules. The reusability of the nanohybrids was also evaluated.  相似文献   

17.
3-dimensional (3D) rod-like CuO with nanowire hierarchical structure has been synthesized successfully by a facile ultrasound assisted method combined with thermal conversion, using rouaite Cu2(OH)3NO3 as the precursor. The product was characterized by XRD, SEM, TEM, HRTEM and FT-IR spectrum. Its optical properties were studied by means of UV–Vis diffuse reflectance absorption spectroscopy and photoluminescence (PL) spectrum. Series of control experiments have been performed to explore influencing factors to the product morphologies and a possible formation mechanism has been proposed. The results show that each CuO rod assembled by tens of nanowires is 200–300 nm in diameter and about 1000 nm in length. Each nanowire contains many interconnected nanoparticles with sizes of about 15 nm. Particularly, ultrasound processing was found beneficial to the formation of the 3D rod-like CuO with nanowire hierarchical structure.  相似文献   

18.
The utility of electronically conductive metal–organic frameworks (EC‐MOFs) in high‐performance devices has been limited to date by a lack of high‐quality thin film. The controllable thin‐film fabrication of an EC‐MOF, Cu3(HHTP)2, (HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene), by a spray layer‐by‐layer liquid‐phase epitaxial method is reported. The Cu3(HHTP)2 thin film can not only be precisely prepared with thickness increment of about 2 nm per growing cycle, but also shows a smooth surface, good crystallinity, and high orientation. The chemiresistor gas sensor based on this high‐quality thin film is one of the best room‐temperature sensors for NH3 among all reported sensors based on various materials.  相似文献   

19.
Core-shell Cu2O/Cu composites were successfully prepared by over-reduction of aqueous CuSO4 with hydrazine hydrate as reductant. Field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) clearly illuminate that the core is Cu2O with 400 nm in diameter, and the shell is Cu with about 50 nm in thickness. The core-shell Cu2O/Cu exhibited weaker polarization and higher coulombic efficiency than pure octahedral Cu2O, especially in the initial stage of cycles. After 50 cycles, the reversible capacity of Cu2O/Cu (360 mAh g?1) was much higher than that of pure Cu2O (160 mAh g?1). The improvement of electrochemical properties is attributed to the core-shell structure of Cu2O/Cu and the catalytic effect of Cu on the decomposition of Li2O during the charging process.  相似文献   

20.
In this study, an effective deposition of copper sulfide (Cux(x = 1,2)S) on the PAN film was proposed by an electroless deposition method with the reduction agents NaHSO3 and Na2S2O3 · 5H2O and chelating agents (ethylenediaminetetraacetic acid, EDTA and triethanolamine, TEA). The mechanism of the Cux(x = 1,2)S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the Cux(x = 1,2)S/PAN films were studied. It was found that the vinyl acetate monomer residue in the PAN substrate would be purged due to the swelling effect by EDTA and TEA solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of the PAN substrate and the chelating agent. The swelling degree (Sd) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA concentration(C) is expressed as: Sd = 0.13 + 0.90 × eˆ(−15.15CEDTA). And TEA series is expressed as: Sd = 0.07 + 1.00 × eˆ(−15.15CTEA). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00 M to 0.20 M. Consequently, the EMI SE of the Cux(x = 1,2)S/PAN films increased from 10∼12 dB to 25∼27 dB. The GIA-XRD analyzer indicated that the deposited layer consisted of CuS and Cu2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号