首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
We present a detailed mechanism for the proton transfer from a protein‐bound protonated water cluster to the bulk water directed by protein side chains in the membrane protein bacteriorhodopsin. We use a combined approach of time‐resolved Fourier transform infrared spectroscopy, molecular dynamics simulations, and X‐ray structure analysis to elucidate the functional role of a hydrogen bond between Ser193 and Glu204. These two residues seal the internal protonated water cluster from the bulk water and the protein surface. During the photocycle of bacteriorhodopsin, a transient protonation of Glu204 leads to a breaking of this hydrogen bond. This breaking opens the gate to the extracellular bulk water, leading to a subsequent proton release from the protonated water cluster. We show in detail how the protein achieves vectorial proton transfer via protonated water clusters in contrast to random proton transfer in liquid water.  相似文献   

2.
A [NiFe] hydrogenase (H2ase) is a proton‐coupled electron transfer enzyme that catalyses reversible H2 oxidation; however, its fundamental proton transfer pathway remains unknown. Herein, we observed the protonation of Cys546‐SH and Glu34‐COOH near the Ni–Fe site with high‐sensitivity infrared difference spectra by utilizing Ni‐C‐to‐Ni‐L and Ni‐C‐to‐Ni‐SIa photoconversions. Protonated Cys546‐SH in the Ni‐L state was verified by the observed SH stretching frequency (2505 cm?1), whereas Cys546 was deprotonated in the Ni‐C and Ni‐SIa states. Glu34‐COOH was double H‐bonded in the Ni‐L state, as determined by the COOH stretching frequency (1700 cm?1), and single H‐bonded in the Ni‐C and Ni‐SIa states. Additionally, a stretching mode of an ordered water molecule was observed in the Ni‐L and Ni‐C states. These results elucidate the organized proton transfer pathway during the catalytic reaction of a [NiFe] H2ase, which is regulated by the H‐bond network of Cys546, Glu34, and an ordered water molecule.  相似文献   

3.
Multiple proton transfer controls many chemical reactions in hydrogen‐bonded networks. However, in contrast to well‐understood single proton transfer, the mechanisms of correlated proton transfer and of correlated proton tunneling in particular have remained largely elusive. Herein, fully quantized ab initio simulations are used to investigate H/D isotopic‐substitution effects on the mechanism of the collective tunneling of six protons within proton‐ordered cyclic water hexamers that are contained in proton‐disordered ice, a prototypical hydrogen‐bonded network. At the transition state, isotopic substitution leads to a Zundel‐like complex, [HO???D???OH], which localizes ionic defects and thus inhibits perfectly correlated proton tunneling. These insights into fundamental aspects of collective proton tunneling not only rationalize recent neutron‐scattering experiments, but also stimulate investigations into multiple proton transfer in hydrogen‐bonded networks much beyond ice.  相似文献   

4.
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.  相似文献   

5.
The mechanism of bacterial methanol dehydrogenase involves hydride equivalent transfer from substrate to the ortho-quinone PQQ to provide a C5-reduced intermediate that subsequently rearranges to the hydroquinone PQQH(2). We have studied the PQQ reduction by molecular dynamic (MD) simulations in aqueous solution. Among the five simulated structures, either Asp297 or Glu171 or both are ionized. Reasonable structures are obtained only when both carboxyl groups are ionized. This is not unexpected since the kinetic pH optimum is 9.0. In the structure of the enzyme.PQQ.HOCH(3) complex, the hydrogen bonded Glu171-CO(2)(-).H-OCH(3) is in a position to act as a general base catalyst for hydride equivalent transfer to C5 of PQQ. We thus suggest that Glu171 plays the role of general base catalyst in PQQ reduction rather than Asp297 as previously suggested. The reduction is assisted by Arg324, which hydrogen bonds to the ortho-quinone moiety of PQQ. The rearrangement of the C5-reduced intermediate to provide hydroquinone PQQH(2) is also assisted by proton abstraction by Glu171-CO(2)(-) and the continuous hydrogen bonding of Arg324 throughout the entire reaction. These features as well as the mapping of the channel for substrate and water into the active site entrance are the observations of major importance.  相似文献   

6.
7.
Self‐assembled crystalline porous organic salts (CPOSs) formed by an acid–base combination and with one‐dimensional polar channels containing water molecules have been synthesized. The water content in the channels of the porous salts plays an important role in the proton conduction performance of the materials. The porous salts described in this study feature high proton conductivity at ambient conditions and can reach as high as 2.2×10−2 S cm−1 at 333 K and under high humid conditions. This is among the best conductivity values reported to date for porous materials, for example, metal–organic frameworks and hydrogen‐bonded organic frameworks. These materials exhibiting permanent porosity represent a group of porous materials and may find interesting applications in proton‐exchange membrane fuel cells.  相似文献   

8.
9.
We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron‐transfer reaction between the photoacid 8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid‐infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long‐range proton transfer over hydrogen‐bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long‐range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.  相似文献   

10.
K. Brocklehurst 《Tetrahedron》1974,30(15):2397-2407
The circumstances in which observation of three reactive protonic states of a reaction, involving an electrophile that increases its reactivity consequent on protonation, may be regarded as compelling evidence of nucleophilic character in the conjugate acid of an anionic nucleophile (”three states criterion“) are delineated. Aspects of the reaction of papain with 2,2′-dipyridyl disulphide not previously reported suggest that this reaction at pH 4 is best described as an intracomplex thiol-disulphide interchange involving the unionized thiol group of the cysteine-25-histidine-159-asparagine-175 hydrogen bonded system of papain with 2,2′-dipyridyl disulphide hydrogen bonded at one nitrogen atom to the carboxyl group of aspartic acid-158. The reaction appears to involve pre-transition state proton transfer in the thiol-imidazole hydrogen bond; the protonation of the side chains of aspartate-158 and histidine-159 may be positively cooperative. Rate equations for reactions involving up to three reactive protonic states are presented in an appendix.  相似文献   

11.
Herein, we present results from molecular dynamics MD simulations ( approximately 1 ns) of the TEM-1 beta-lactamase in aqueous solution. Both the free form of the enzyme and its complex with benzylpenicillin were studied. During the simulation of the free enzyme, the conformation of the Omega loop and the interresidue contacts defining the complex H-bond network in the active site were quite stable. Most interestingly, the water molecule connecting Glu166 and Ser70 does not exchange with bulk solvent, emphasizing its structural and catalytic relevance. In the presence of the substrate, Ser130, Ser235, and Arg244 directly interact with the beta-lactam carboxylate via H-bonds, whereas the Lys234 ammonium group has only an electrostatic influence. These interactions together with other specific contacts result in a very short distance ( approximately 3 A) between the attacking hydroxyl group of Ser70 and the beta-lactam ring carbonyl group, which is a favorable orientation for nucleophilic attack. Our simulations also gave insight into the possible pathways for proton abstraction from the Ser70 hydroxyl group. We propose that either the Glu166 carboxylate-Wat1 or the substrate carboxylate-Ser130 moieties could abstract a proton from the nucleophilic Ser70.  相似文献   

12.
The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.  相似文献   

13.
The proton activity inside the channels of zeolite L has been studied by investigating dye-loaded zeolite L crystals under different conditions, such as water content, nature of the counterions, and nature of the solvent. The discussion is made within the frame of three types of dye-loaded zeolite L systems, classified according to their ability to exchange matter (dyes, cations, solvent, and other small molecules) with the environment. The classification refers to dye-loaded zeolites. The term "closed" and "semi-open" characterize different possibilities of the channels to exchange small molecules, cations, and solvent molecules with the environment, but not dyes. The "open" systems also allow for dye exchange. UV-visible and fluorescence spectroscopy have been used to observe the proton activity inside the zeolite L channels. The influence of the proton activity on the luminescence of encapsulated dyes is discussed, special attention being given to luminescence quenching by excited-state protonation. Partially proton-exchanged zeolite L can be a superacid, whereas for the M-exchanged form (M: K(+), Li(+), Cs(+), Mg(2+), Ca(2+)) the pH ranges from about 2.5 to 3.5. For these last forms, the differences in pH are due to the acid-base reactions of the respective metal cations with water inside the zeolite. Finally, we describe an easy experimental procedure that can be used to tune the proton activity inside the zeolite L to a considerable extent.  相似文献   

14.
High energy irradiation to the hydrogen bonded system is important in relevance with the initial process of DNA and enzyme damages. In the present study, the effects of radiation to catalytic triad have been investigated by means of direct ab‐initio molecular dynamics (AIMD) calculation. As a model of the catalytic triad, Ser‐His‐Glu residue, which is one of the important enzymes in the acylation reaction, was examined. The ionization and electron attachment processes in Ser‐His‐Glu were investigated as the radiation effects. The direct AIMD calculation showed that a proton of His is spontaneously transferred to carbonyl oxygen of Glu after the ionization. However, the whole structure of catalytic triad was essentially kept after the ionization. On the other hand, in the case of the electron capture in the model catalytic triad Ser‐His‐Glu, the dissociation of Glu residue from [Ser‐His]? was found as a product channel. The mechanism of ionization and electron capture process in the catalytic triad was discussed on the basis of theoretical results. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The tetrameric M2 protein bundle of the influenza A virus is the proton channel responsible for the acidification of the viral interior, a key step in the infection cycle. Selective proton transport is achieved by successive protonation of the conserved histidine amino acids at position 37. A recent X-ray structure of the tetrameric transmembrane (TM) domain of the protein (residues 22-46) resolved several water clusters in the channel lumen, which suggest possible proton pathways to the His37 residues. To explore this hypothesis, we have carried out molecular dynamics (MD) simulations of a proton traveling towards the His37 side chains using MD with classical and quantum force fields. Diffusion through the first half of the channel to the "entry" water cluster near His37 may be hampered by significant kinetic barriers due to electrostatic repulsion. However, once in the entry cluster, a proton can move to one of the acceptor His37 in a nearly barrierless fashion, as evidenced both by MD simulations and a scan of the potential energy surface (PES). Water molecules of the entry cluster, although confined in the M2 pore and restricted in their motions, can conduct protons with a rate very similar to that of bulk water.  相似文献   

16.
In our attempts to achieve a detailed understanding of protein–silica interactions at an atomic level we have, as a first step, simulated a small system consisting of one alanine in different protonation states, and a hydroxylated silica surface, using a first‐principles molecular‐dynamics technique. The simulations are carried out in vacuo as well as in the presence of water molecules. In the case of a negatively charged surface and an alanine cation, an indirect proton transfer from the alanine carboxylic group to the surface takes place. The transfer involves several water molecules revealing an alanine in its zwitterionic state interacting with the neutral surface through indirect hydrogen bonds mediated by water molecules. During the simulation of the zwitterionic state the ammonium group eventually establishes a direct ? N? H???O? Si interaction, suggesting that the surface–amino group interaction is stronger than the interaction between the surface and the carboxylic group. In vacuum simulations, the amino group exhibits clearly stronger interactions with the surface than the carboxylic group.  相似文献   

17.
Glu194 is a residue located at the end of F helix on the extracellular side of the light‐induced proton pump bacteriorhodopsin (BR). Currently, it is well recognized that Glu194 and Glu204 residues, along with water clusters, constitute the proton release group of BR. Here we report that the replacement of Glu194 for Gln affects not only the photocycle of the protein but also has tremendous effect on the all‐trans to 13‐cis thermal isomerization. We studied the pH dependence of the dark adaptation of the E194Q mutant and performed HPLC analysis of the isomer compositions of the light‐ and partially dark‐adapted states of the mutant at several pH values. Our data confirmed that E194Q exhibits extremely slow dark adaptation over a wide range of pH. HPLC data showed that a significantly larger concentration of all‐trans isomer was present in the samples of the E194Q mutant even after prolonged dark adaptation. After 14 days in the dark the 13‐cis to all‐trans ratio was 1:3 in the mutant, compared to 2:1 in the wild type. These data clearly indicate the involvement of Glu194 in control of the rate of all‐trans to 13‐cis thermal isomerization.  相似文献   

18.
A hydrogen‐bonded complex was successfully isolated as crystals from the anthranol/anthroxyl pair in the self‐exchange proton‐coupled electron transfer (PCET) reaction. The anthroxyl radical was stabilized by the introduction of a 9‐anthryl group at the carbon atom at the 10‐position. The hydrogen‐bonded complex with anthranol self‐assembled by π–π stacking to form a one‐dimensional chain in the crystal. The conformation around the hydrogen bond was similar to that of the theoretically predicted PCET activated complex of the phenol/phenoxyl pair. X‐ray crystal analyses revealed the self‐exchange of a hydrogen atom via the hydrogen bond, indicating the activation of the self‐exchange PCET reaction between anthranol and anthroxyl. Magnetic measurements revealed that magnetic ordering inside the one‐dimensional chain caused the inactivation of the self‐exchange reaction.  相似文献   

19.
Octacyanometalates K4[Mo(CN)8] and K4[W(CN)8] are completely protonated in superacidic mixtures of anhydrous hydrogen fluoride and antimony pentafluoride. The resulting hydrogen isocyanide complexes [Mo(CNH)8]4+ [SbF6]?4 and [W(CNH)8]4+ [SbF6]?4 are the first examples of eight‐coordinate homoleptic metal complexes containing hydrogen isocyanide (CNH) ligands. The complexes were crystallographically characterized, revealing hydrogen‐bonded networks with short N???H???F contacts. Low‐temperature NMR measurements in HF confirmed rapid proton exchange even at ?40 °C. Upon protonation, ν(C≡N) increases of about 50 cm?1 which is in agreement with DFT calculations.  相似文献   

20.
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface—whereas in bulk water the coupling is homogeneous. For strongly hydrogen‐bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near‐surface region. For weakly hydrogen‐bonded OH groups that absorb around 3500 cm?1, which are assigned to the outermost, yet hydrogen‐bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen‐bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号