首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemistry of indium species was investigated at glassy carbon, tungsten and nickel electrodes in a basic 1‐ethyl‐3‐methylimidazolium chloride/tetrafluoroborate ionic liquid. Amperometric titration experiments suggest that In(III) chloride is complexed as [InCl5]2? in this ionic liquid. The electrochemical reduction of [InCl5]2? to indium metal is preceded by overpotential driven nucleations. The effective anodic dissolution of indium to indium(III) requires, however, the presence of sufficient chloride ions at the electrode surface. The electrodeposition of indium at glassy carbon and tungsten electrodes proceeds via three‐dimensional instantaneous nucleation with diffusion‐controlled growth of the nuclei. At the nickel electrode, the deposition proceeds via three‐dimensional progressive nucleation with diffusion‐controlled growth of the nuclei. Raising the deposition temperature decreases the average radius of the individual nuclei, r. Scanning electron microscopic and x‐ray diffraction data indicated that bulk crystalline indium electrodeposits could be prepared on nickel substrates within a temperature range between 30 and 120 °C.  相似文献   

2.
A green chemistry method to nano‐roughen a Pt disk microelectrode has been successfully developed via electrochemical alloying‐dealloying in an ionic liquid bath comprising of ZnCl2 and 1‐ethyl‐3‐methylimidazolium chloride. The nano‐roughened Pt layer possesses bark‐like nanoporous structures characteristic of nano‐sized aggregates separated by nano‐cracks whose width ranging from around 50 to 200 nm. The nano‐roughened microelectrode possesses high surface area and diffusional properties typical of a microelectrode. Electrochemical oxidation and reduction of nitrite have been studied as an example for demonstrating that the nano‐roughened microelectrode is a promising technique for electroanalysis and electrocatalysis applications.  相似文献   

3.
《Electroanalysis》2018,30(8):1811-1819
Novel copper‐palladium nanoparticles modified glassy carbon electrodes (Cu−Pd/GC) with enhanced nonenzymatic sensing for glucose were facilely prepared by one‐step electrodeposition. The structure and composition of the prepared nanoparticles were characterized by XRD, SEM, TEM and EDS, respectively. The electrode modified process was characterized by electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometric experiments were used to evaluate the electrocatalytic activities of the electrodes toward glucose. The surface morphology and the electrocatalytic activities of Cu−Pd/GC was compared to Pd and Cu nanoparticles modified glassy carbon electrodes (Pd/GC and Cu/GC), respectively. Thanks to homogeneous distribution of Cu−Pd nanoparticles and the synergistic effect of Cu and Pd atoms, Cu−Pd/GC exhibited the highest sensitivity (298 μA mM−1 cm−2) and the widest linear amperometric response (0.01 mM to 9.6 mM, R2=0.996) toward glucose compared to Pd/GC and Cu/GC. The detection limit of Cu−Pd/GC was 0.32 μM (S/N=3). In addition, the as‐prepared Cu−Pd/GC glucose sensor also exhibited exceptional capabilities of anti‐interference, reproducibility and long‐term stability. The as‐prepared sensor was also evaluated for determination of glucose concentration in human blood serum samples, which exhibited high reliability and accuracy, having great potential in clinical application.  相似文献   

4.
Pd nanoparticles with an average diameter of 5 nm were decorated on the surface of ionic liquid derived fibrillated mesoporous carbon (IFMC) to prepare a novel nano‐hybrid material (Pd@IFMC). Thereafter, glucose oxidase was immobilized on Pd@IFMC modified glassy carbon electrode to fabricate an enzymatic glucose biosensor. A pair of well‐defined redox peaks was recorded for direct electron transfer of the immobilized glucose oxidase at the formal potential of ? 0.418 V with a peak to peak separation of 25 mV. Electron transfer rate constant of was calculated to be 14.6 s?1. The response of fabricated biosensor was linear towards glucose concentration.  相似文献   

5.
The role of N‐heterocyclic carbenes in the chemistry of ionic liquids based on imidazolium salts has long been discussed. Here, we present experimental evidence that 1‐ethyl‐3‐methylimidazolium‐2‐ylidene (EMIm) can coexist with its protonated imidazolium cation (EMImH+) at low temperatures. If the vapor of the ionic liquid [EMImH+][AcO?] is trapped in solid argon or nitrogen at 9 K, only acetic acid (AcOH) and the carbene, but no ionic species, are found by IR spectroscopy. This indicates that during the evaporation of [EMImH+][AcO?] proton transfer occurs to form the neutral species. If the vapor of [EMImH+][AcO?] is trapped at 9 K as film in the absence of a host matrix, a solid consisting of EMImH+, EMIm, AcO?, and AcOH is formed. During warming to room temperature the proton transfer in the solid to form back the IL [EMImH+][AcO?] can be monitored by IR spectroscopy. This clearly demonstrates that evaporation and condensation of the IL [EMImH+][AcO?] results in a double proton transfer, and the carbene EMIm is only metastable even at low temperatures.  相似文献   

6.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

7.
Summary: Cationic ring‐opening polymerization of 3‐ethyl‐3‐hydroxymethyloxetane (EOX) in a neutral ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmim][BF4]) leading to a multihydroxyl, branched polyether proceeds readily to nearly quantitative conversion. Because of the relatively high polarity of ionic liquids, intermolecular hydrogen bonding leading to the formation of aggregates is reduced considerably. On the other hand, intramolecular hydrogen bonding facilitating intramolecular chain transfer is not significantly affected and the molecular weights of polymers are in the same range as those obtained in bulk polymerization or polymerization in organic solvents.

  相似文献   


8.
A novel amperometric glucose biosensor is presented in this article, which is based on the adsorption of glucose oxidase on gold‐platinum nanoparticle (AuPt NP)‐multiwalled carbon nanotube (MWNT) – ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, [OMIM]PF6) composite. The gold‐platinum nanoparticles is prepared through direct electrodeposition. Owing to the synergistic action of AuPt nanoparticle, MWNT and [OMIM]PF6, the biosensor shows good response to glucose, with wide linear range (0.01 to 9.49 mM), short response time (3 s), and high sensitivity (3.47 μA mM−1). With the biosensor the determination of glucose in human serum is performed.  相似文献   

9.
In view of the continuous threat of opportunistic fungal infections to human health and the emerging importance of ionic liquids in therapeutic applications, we report the efficient one‐pot synthesis of a series of 1‐alkyl‐3‐methylimidazolium bromide [RMIM]Br ionic liquids through an ultrasound‐assisted reaction of 1‐methylimidazole and alkyl bromides (RBr) under solvent‐free conditions. High product yields were obtained for all syntheses (>95%) under mild conditions (2‐5 hours at 20‐40 °C). The success of the synthetic method was confirmed through 1H‐NMR, 13C‐NMR and FT‐IR spectroscopy. All products exhibited activity against the fungus C. albicans with clotrimazole and water as positive and negative controls, respectively. At a concentration of 1%, [OMIM]Br IL exhibited an antimycotic activity with an index of 1.5 which is comparable to that of 1% clotrimazole having an antimicrobial index of 1.3, signifying the potential of the product as a fungal growth inhibitor. Structure‐Activity Relationship (SAR) studies showed that an increase in the alkyl chain length corresponds to an increase in the antifungal activity of the ionic liquids.  相似文献   

10.
Assuming various ionic states in ionic liquids (ILs) are in equilibrium with exchange rates too high to be distinguished by NMR experiments and the overall response of measured diffusivity is viewed as the sum of weighted responses of diffusivity of all possible components, the ratio of cation diffusivity to anion diffusivity, D+/D?, in a specified IL affords the physical meaning: relative association degrees observed by anion‐containing components to cation‐containing components. These values decrease with increasing temperature showing the equilibrium between ionic states shifting to smaller components. In the neat 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMI‐PF6), (BMI‐PF6)nPF6? anions are found preferred to (BMI‐PF6)nBMI+ cations and this phenomenon is termed as hyper anion preference (HAP). The counterpart statement, “isolated BMI+Cations Are More than Isolated PF6? Anions in the Room Temperature in the BMI‐PF6 Ionic Liquid” is employed as the research title. The HAP approach can be employed to explain the temperature‐dependent values of D+/D? obtained for BMI‐PF6/2,2,2‐trifluoroethane (TFE) mixtures at two different compositions (χTFE = 0.65 and 0.80). More significantly, this argument can rationalize numerous physical properties published for this IL: (1) higher sensitive of anionic diffusivity towards temperatures than cationic diffusivity, (2) temperature‐dependent cationic transference number, (3) low anionic donicity and high ionicity and (4) high viscosity.  相似文献   

11.
Most of the practical applications in electrocatalysis require porous electrodes, built by dispersing the nanoparticles (NPs) on a gas diffusion layer, as carbon paper (CP). The lack of correlation between classic measurements in clean, controlled surfaces and thin films with those of porous electrodes, used in practical application, is largely neglected. Since catalysis depends on the area available, it is clear that the distribution of the NPs on the porous material is pivotal to the efficiency of the catalyst. Here we show a low‐cost method to disperse NPs on CP assisted in ultrasonic bath. Such method improves the Pt/C NPs distribution over the CP compared to the immersion method. As proof‐of‐concept, we show an increase in output current by using Pt/C/CP for 10 mM glucose electrooxidation and O2 eletroreduction in buffered solution at 37 °C, which is ascribed to the increase in collision factor. Furthermore, the cathodic reaction is facilitated compared to electrodes prepared by immersion, yielding an unprecedented open circuit voltage of 800 mV for the coupled reaction. The glucose/oxygen reaction is also investigated in passive flow in an H‐type cell to produce power. This concept shows promising application to build any kind of porous electrodes with improved area utilization.  相似文献   

12.
The room temperature ionic liquid n‐butylpyridinium tetrafluoroborate (BPyBF4) is used as a ‘green’ recyclable alternative to classical molecular solvents for the cyclocondensation of α‐tosyloxyketones with 1‐aminoisoquinoline to prepare imidazo[2,1‐a]isoquinolines in good yields.  相似文献   

13.
A capillary electrophoretic (CE) method coupled with the use of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (1E‐3MI‐TFB) ionic liquid as background electrolyte (BGE) has been developed for the simultaneous separation of nine tricyclic antidepressants, viz. amitriptyline (Ami), clomipramine (Clo), desipramine (Des), fluphenazine (Flu), imipramine (Imi), nortriptyline (Nor), promazine (Pro), thioridazine (Thi) and trimipramine (Tri). Resolution of TCAs with similar molecular structures and pKa values was accomplished by minute manipulation of the electrophoretic velocities of TCAs via reversed electroosmotic flow (EOF) generated by adsorption of 1E‐3MI cations onto the capillary wall. The optimal separation was obtained with a 50 mM 1E‐3MI‐TFB as the sole BGE at pH 3. Symmetric peaks with efficiencies up to 2.4 × 105 plates/m were achieved. RSD values on migration times and peak areas were in the ranges of 0.63–0.95% and 3.41–6.34% (n = 4), respectively. The role of different alkyl groups on the imidazolium cations was also investigated.  相似文献   

14.
In this work, a glassy carbon electrode (GCE) was modified with multiwall carbon nanotubes/ionic liquid/graphene quantum dots (MWCNTs/IL/GQDs) nanocomposite. Then, the nanocomposite was decorated with nickel‐cobalt nanoparticles (Ni?Co NPs), and it was used as a non‐enzymatic glucose sensor. Field emission scanning electron microscopy, X‐ray diffraction spectroscopy, and energy dispersive spectroscopy were employed to prove the electrodeposition of the Ni?Co NPs on the surface of MWCNTs/IL/GQDs/GCE. Also, cyclic voltammetric and amperometric methods were utilized for the investigation of the electrochemical behaviour of the Ni?Co NPs/MWCNTs/IL/GQDs/GCE for glucose oxidation. The novel amperometric sensor displayed two linear ranges from 1.0 to 190.0 μmol L?1 and 190.0 to 4910 μmol L?1 with a low detection limit of 0.3 μmol L?1 as well as fast response time (2 s) and high stability. Also, the sensor showed good selectivity for glucose determination in the presence of ascorbic acid, citric acid, dopamine, uric acid, fructose, and sucrose, as potential interference species. Finally, the performance of the proposed sensor was investigated for the glucose determination in real samples. Ni?Co NPs/MWCNTs/IL/GQDs/GCE showed good sensitivity and excellent selectivity.  相似文献   

15.
A newly nonenzymatic sensor for hydrogen peroxide (H2O2) based on the (Au‐HS/SO3H‐PMO (Et)) nanocomposite is demonstrated. The electrochemical properties of the as‐prepared nanocomposite were studied. It displayed an excellent performance towards H2O2 sensing in the linear response range from 0.20 µM to 4.30 mM (R=0.9999) with a sensitivity of 6.35×102 µA µM?1 cm?2 and a low detection limit of 0.0499 µM. Furthermore, it was not affected by electroactive interference species. These features proved that the modified electrode was suitable for determination of H2O2.  相似文献   

16.
A nanoporous gold wire electrode (NPGWE) was prepared using a published one‐step method from a 0.3 M oxalic acid at room temperature. It was found in this study that the surface morphology, including the pore size and the width of the ligaments, and thus the surface roughness of the NPGWE could be easily manipulated by controlling the solution stirring rate. The NPGWE was used for the study of electrochemical oxidation and determination of glucose in 0.1 M NaOH using cyclic voltammetry. The effect of two potential interferences chloride ion and ascorbic acid was assessed. The electrode showed a linear range of glucose concentration from 0.5 mM to 10 mM with a detection limit of 8 μM.  相似文献   

17.
In this work, an electrochemical sensor based on Ni3S2 nanoparticles supported on porous ball‐milled silicon was fabricated for measuring glucose. At first, the glassy carbon electrode (GCE) surface was modified by Ni3S2 nanoparticles supported on a porous ball‐milled silicon substrate. To characterize the modified electrode, N2 adsorption‐desorption isotherms and BHJ, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping and X‐ray diffraction (XRD) were used. In the following, the effective parameters on the sensor response such as pH, NaOH concentration, catalyst concentration, applied potential, and rotational speed of the electrode were optimized using cyclic voltammetric (CV) and hydrodynamic amperometric methods. Under the optimal conditions, the calibration curve was plotted using the hydrodynamic amperometric method. Three linear regions were obtained from 0.5–134, 134–1246, and 1246–3546 μM, with a detection limit of 0.2 μM for glucose. Finally, the proposed method was used for measuring glucose levels in human blood serums.  相似文献   

18.
Hydroformylation of oct‐1‐ene leading to nonanal (denoted by n) and 2‐methyloctanal (denoted by iso), in a novel series of caprolactam‐based and common imidazolium‐based ionic liquid crystals (ILCs; see Fig. 1) carried out for the first time (caprolactam=hexahydro‐2H‐azepin‐2‐one) (Scheme). Variation of the chain length (n) of the alkyl substituent (Cn) at the caprolactam cation (CP+) from n=12 to 18 caused the n/iso ratios to vary from 1.7 to 2.9. Meanwhile, the TOF (turnover frequency) decreased from 148 to 122 mol mol−1 h−1. Hydroformylation in the imidazolium‐based ILCs revealed that [C16MIm]⋅BF4 (n/iso 5.2, TOF 969 mol mol−1 h−1) was more favorable than [C16MIm]⋅MsO (n/iso 3.7, TOF 969 mol mol−1 h−1) for the formation of the unbranched aldehyde. Although the n/iso ratio in caprolactam‐based ILCs was lower than that in imidazolium‐based ILCs, the conversions are higher in the former ILCs on the whole. It should be noted that the lamellar mesophase has a strong effect on the regioselectivity and TOF of the hydroformylation. Also, it is evident that the influences of different ILCs on the hydroformylation under the various reaction conditions are greatly different. The identification of the reaction products was established by GC and GC/MS analyses.  相似文献   

19.
Platinum nanoparticles (Ptnano) decorated multiwalled carbon nanotubes (MWCNTs)–1‐octyl‐3‐methylimidazolium hexafluorophosphate ([omim][PF6]) composite material (MWCNTs‐Ptnano‐[omim][PF6]) was fabricated and characterized for the first time. In the presence of [omim][PF6], more Ptnano could deposit on MWCNTs. The average diameter of the deposited Ptnano was about 5 nm. The composite material film coated glassy carbon electrode (GCE) exhibited sensitive voltammetric response to theophylline (TP). Under the optimized conditions (i.e., preconcentration for 2 minutes on open circuit in 0.10 M pH 3.0 phosphate buffer), the anodic peak current of TP at about 1.1 V (vs. SCE) was linear to TP concentration over the range of 1.0×10?8–1.0×10?5 M. The detection limit was estimated to be 8.0×10?9 M. The modified electrode was successfully applied to the determination of TP in medicine tablet and green tea. In addition, the voltammetric responses of hypoxanthine (HX), xanthine (Xan) and uric acid (UA) on the MWCNTs‐Ptnano‐[omim][PF6]/GCE were also discussed.  相似文献   

20.
A novel non‐enzymatic glucose sensor based on nickel hydroxide and intercalated graphene with ionic liquid (G‐IL) nanocomposite modified glass carbon electrode was fabricated. Scanning electron microscope, Fourier transform infrared spectra and energy dispersive X‐ray spectroscopy of the nanocomposite confirmed the morphology and ingredient of Ni(OH)2 as well as G‐IL. Moreover, experimental results of cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry indicated the sensing properties of Ni(OH)2 at Ni(OH)2/G‐IL modified electrode towards the typical electrocatalytic oxidation process of glucose at 0.43 V in 0.10 M NaOH. The current response was linearly related to glucose concentration in a range from 0.5 to 500 μM with a detection limit of 0.2 μM (S/N = 3) and sensitivity of 647.8 μA mM?1 cm?2. The response time of the sensor to glucose was less than 2 s. This work may be expected to develop an excellent electrochemical sensing platform of G‐IL as a catalysis carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号