首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to investigate whether three commercially available immobilized artificial membrane (IAM) HPLC columns yield collinear data for neutral compounds, and whether IAM scales are distinct from the log Poct (partition coefficient in the octanol/H2O system) scale. With these objectives, the retention mechanisms on the IAM HPLC columns were analysed by linear solvation free‐energy relationships (LSERs). A set of 68 neutral model compounds with known solvatochromic parameters and log Poct values was investigated, allowing a regular and broad exploration of property space. The resulting solvatochromic equations clearly indicate that the three IAM stationary phases retain small neutral solutes by a balance of intermolecular forces closely resembling those underlying partitioning in octanol/H2O and retention on a reversed‐phase LC‐ABZ HPLC column. For all systems, the solute's size and hydrogen‐bond‐acceptor basicity are the two predominant factors, whereas dipolarity/polarisability and hydrogen‐bond‐donor acidity play only minor roles.  相似文献   

2.
3.
4.
The objectives of this study were to establish guidelines for the proper measurement of capacity factors (log k(IAMw) on immobilized artificial membrane (IAM) stationary phases. In this context, some aspects related to the extrapolation of log(kIAMw) values, the stability and properties of IAM.PC.DD2 stationary phases and the column-to-column variability are discussed. No significant difference was observed when using either acetonitrile or methanol for the linear extrapolation of log k(IAM) values. However, methanol seems more appropriate when working with ionized compounds. Plotting isocratic capacity factors against the percentage (v/v) of co-solvent instead of the mole fraction leads to more reliable log k(AMW) values. Furthermore, our results with a YMC ODS-AQ and an IAM.PC.DD2 HPLC column indicate that only small differences arise between extrapolated capacity factors when using the (w(w))pH or the (s(w))pH operational scale and correcting or not the ionic strength for dilution caused by the co-solvent. The use of the (s(w))pH scale is recommended when working with ionized compounds in order to avoid parabolic relationships during linear extrapolation. The pH-dependent retention of three ionizable drugs on an IAM.PC.DD2 phase showed that secondary interactions with the charged moieties of the chromatographic surface affect the retention of ionized compounds around physiological pH. Finally, it was shown that column ageing occurs also with IAM.PC.DD2 stationary phases and that it depends on the column as well as on the investigated analyte. The intra-batch variability for IAM.PC.DD2 phases was small, whereas a marked and solute-dependent batch-to-batch variability was apparent.  相似文献   

5.
The objective of this study was to investigate drug–membrane interaction by immobilized liposome chromatography (ILC; expressed as lipophilicity index log Ks) and the comparison with lipophilicity indices obtained by liposome/H2O, octan‐1‐ol/H2O, and immobilized artificial membrane (IAM) systems. A set of structurally diverse monofunctional compounds and drugs (nonsteroidal anti‐inflammatory drugs and β‐blockers) were selected in this study. This set of solutes consists of basic or acidic functionalities which are positively or negatively charged at physiological pH 7.4. No correlation was found between log Ks from ILC and lipophilicity indices from any of the other membrane model systems for the whole set of compounds. For structurally related compounds, significant correlations could be established between log Ks from ILC and lipophilicity indices from IAM chromatography and octan‐1‐ol/H2O. However, ILC and liposome/H2O systems only yield parallel partitioning information for structurally related large molecules. For hydrophilic compounds, the balance between electrostatic and hydrophobic interactions dominating drug partitioning is different in these two systems.  相似文献   

6.
Li J  Sun J  Cui S  He Z 《Journal of chromatography. A》2006,1132(1-2):174-182
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.  相似文献   

7.
A porous zwitterionic monolith was prepared by in situ covalent attachment of lysine to a γ‐glycidoxypropyltrimethosysilane‐modified silica monolith. The prepared column was used to perform neutral and ionized solutes separations by pressurized (pCEC). Due to the zwitterionic nature of the resulting stationary phase, the monolithic column provided both electrostatic attraction and repulsion sites for electrochromatographic retention for ionized solutes. Separation of several nucleotides was investigated on the monolithic column. It was shown that the nucleotides could be separated based on hydrophilic and electrostatic interactions between the stationary phase and analyte. Besides, the separation property of the zwitterionic silica monolith was compared with the use of diamine‐bonded silica monolith as stationary phase. As expected, the lysine monolith exhibited a lower retention for the five nucleotides, which was due to the dissociation of the external carboxylic acid groups, leading to electrostatic repulsion with negatively charged solutes. Under the same experimental conditions, separation of the five nucleotides on the zwitterionic column was in less than 8 min, while that on the diamine column was in approximately 60 min.  相似文献   

8.
The chromatographic capacity factors (log k′) for 23 amines were measured by High Performance Liquid Chromatography (HPLC) on a stationary phase composed of phospholipids, the so‐called `Immobilized Artificial Membrane' (IAM). The chromatographic behaviour of the compounds, which consist of primary, secondary, and tertiary amines, and compounds with endocyclic amino functions, was studied with eluents at various pH values (7.0, 5.5, and 3.0). The results were compared both to the octanol/buffer partition values of neutral forms (log P) and to those of mixtures of neutral and ionised forms, existing at the three pH values above mentioned (log D7.0, log D5.5, and log D3.0). At pH 7.0, the log k′ of all secondary and tertiary amines overlapped with those previously observed for neutral isolipophilic compounds. This behaviour was also observed for primary amines, but only for compounds fully ionised at this pH. In contrast, the partially ionised primary amines at pH 7.0 and the compounds with an endocyclic amino function both showed stronger interactions with phospholipids than expected on the basis of log P. The changes in retention observed with eluents at pH 5.5 indicated that retention varies with the ionisation degree of the analytes. At pH 3.0, the interaction between phospholipids and the ionised forms of the amines considered was impaired probably by a change in the charges on the IAM surface. The present study indicates that phospholipids are a partitioning phase that better accommodates the neutral forms of primary amines than does octanol. Moreover, the phospholipid phase is much less sensitive to the ionisation of analytes than octanol, but only at pH 7.0 and 5.5; indeed, the ionised forms of all the amines considered are retained to the same extent as expected for hypothetical neutral isolipophilic compounds. We can thus conclude that, for amines, the partition scale in phospholipids is distinct from the one in octanol.  相似文献   

9.
10.
The current theory of programmed temperature gas chromatography considers that solutes are focused by the stationary phase at the column head completely and does not explicitly recognize the different effects of initial temperature (To) and heating rate (rT) on the retention time or temperature of a homologue series. In the present study, n‐alkanes, 1‐alkenes, 1‐alkyl alcohols, alkyl benzenes, and fatty acid methyl esters standards were used as model chemicals and were separated on two nonpolar columns, one moderately polar column and one polar column. Effects of To and rT on the retention of nonstationary phase focusing solutes can be explicitly described with isothermal and cubic equation models, respectively. When the solutes were in the stationary phase focusing status, the single‐retention behavior of solutes was observed. It is simple, dependent upon rT only and can be well described by the cubic equation model that was visualized through four sequential slope analyses. These observed dual‐ and single‐retention behaviors of solutes were validated by various experimental data, physical properties, and computational simulation.  相似文献   

11.
The retention behavior of selenites, selenates, seleno-dl-methionine, selenocystine, selenocystamine, selenourea, dimethyl selenide, and dimethyl diselenide was investigated by means of biomimetic liquid chromatography. For this purpose, two immobilized artificial membrane (IAM) columns, namely, IAM.PC.DD2 and IAM.PC.MG, and two immobilized plasma protein columns, human serum albumin (HSA) and α1-acid glycoprotein (AGP) columns, were employed using different mobile phase conditions in respect to pH and buffer composition. In general, satisfactory interrelations between retention factors obtained with the two IAM stationary phases and HSA/AGP columns were obtained. Large differences were observed between biomimetic retention factors and octanol–water logD values, since the latter fail to describe electrostatic interactions. In contrast, despite the column diversity, the net retention outcome on all four biomimetic columns was quite similar, especially in the presence of phosphate-buffered saline, which by its effective shielding alleviates the differences between the stationary phases. Of the two IAM columns, IAM.PC.DD2 showed better performance when compared with HSA and AGP columns as well as to octanol–water partitioning. Biomimetic chromatographic indices were further used to estimate the percentage of human oral absorption and plasma protein binding of the eight selenium species investigated, according to equations previously reported in the literature. The estimated values of human oral absorption imply moderate absorption only for dimethyl diselenide, which also may exhibit considerable plasma protein binding. Moderate affinity for plasma proteins should also be expected for dimethyl selenide and selenocystamine.
Figure
Biomimetic chromatography in estimating pharmacokinetic properties of Se species  相似文献   

12.
13.
14.
Chromatographic retention factors (k′) of a series of eight β-adrenoceptor antagonist compounds (β-adrenolytic drugs) were determined employing an immobilized artificial membrane column (IAM.PC.DD). The influence of mobile phase pH, ionic strength, and organic modifier composition was studied in order to examine column performance. After the IAM.PC.DD columns were exposed to approximately 7000 column volumes of a 0.01 M PBS mobile phase, five out of six columns tested showed significant peak broadening and decreased k′ values indicative of premature column failure. The data suggested that the immobilized phospholipids stationary phase was removed by the 0.01 M PBS mobile phase. The β-adrenolytic drug's log kIAM values obtained with an IAM.PC.DD column were compared to an esterIAM.PC.MG column for predicting drug membrane interactions. For the linear regression analysis between log kIAM and the logarithm of the n-octanol–water partition coefficients (rIAM.PC.DD=0.8710 vs. rIAM.PC.MG=0.9538), the C18 HPLC retention factors (rIAM.PC.DD=0.8408 vs. rIAM.PC.MG=0.9380), the liposome partition coefficients (rIAM.PC.DD=0.8887 vs. rIAM.PC.MG=0.9187), and various pharmacokinetic parameters, significantly better correlations were obtained with the esterIAM.PC.MG column than the IAM.PC.DD column.  相似文献   

15.
We have modified a reversed-phase (RP8) column by passing through it an aqueous solution of phosphatidylcholine-based liposomes. The phospholipids from the liposomes adsorb onto the octyl chain of the stationary phase, thus altering the nature of the stationary phase and of the chromatographic interactions. The properties of the phospholipid-modified column were investigated using solutes belonging to several chemical classes. We found that the retention factors of negatively and positively charged solutes decreased as the amount of phospholipid in the column was increased. For the solutes studied here the extent of the decrease was smaller for the positive solutes. With neutral solutes, the retention factors of some (benzenediols) increased markedly while with others (ketones) the retention factors decreased. The selectivities between the various solutes on the phospholipid-modified column were different than on the original reversed-phase column. The retention behavior of the solutes can be explained in terms of (1) effective shielding of the hydrophobic part of the stationary phase by the polar head groups of the phospholipids and (2) hydrogen bond formation between the solutes and the carbonyl oxygens as well as the non-ester phosphate oxygens in the polar head groups of the phospholipids.  相似文献   

16.
A novel 1,3‐alternate 25,27‐bis‐[cyanopropyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene‐bonded silica gel stationary phase (CalixPrCN) was prepared and its structure was confirmed by ATR‐FTIR spectroscopy and elemental analysis. The CalixPrCN phase was characterized in terms of its surface coverage, hydrophobic selectivity, aromatic selectivity, shape selectivity, hydrogen bonding capacity, residue metal content, and silanol activity based on Tanaka, Lindner, and SMR 870 test protocols. The effect of the acetonitrile content on the retention and selectivity of the selected neutral, basic, and acidic solutes was studied. The neutral and acidic analytes exhibited classical RP behavior, in which retention time decreases with increasing acetonitrile content. In contrast, basic analytes showed an increase in retention at low and high percentages of acetonitrile, forming “U‐shaped” retention profiles. The new calixarene phase was compared with previously reported 1,3‐alternate 25,27‐bis‐[propyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene stationary phase and commercial cyanopropyl column. The results indicate that the CalixPrCN stationary phase behaves like RP packing; however, inclusion complex formation, dipole–dipole, and π–π interactions seem to be involved in the separation process. The selectivity of this phase was demonstrated in separation of polynuclear aromatic hydrocarbons, non‐steroidal anti‐inflammatory drugs, and sulfonamides as analytes.  相似文献   

17.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

18.
LC retention data have been measured using various stationary phases with an emphasis on highly polar to moderately polar neutral organic compounds having octanol‐water partition coefficients (Kow) in log units between 0 and 3. The relationships between the retention factor measured in water and the octanol‐water partition coefficient are linear but with different slopes for octadecyl (C18) silicas, and two polystyrene divinylbenzene (PS‐DVB) phases with low and high surface areas. These relationships confirm that highly cross‐linked polymers can provide more than 1000‐times higher retention values than C18 silicas for moderately polar analytes but close values for highly polar ones. They also explain why C18 silicas and polymers are equivalent for the separation of very polar analytes. In contrast, due to a different retention mechanism, no relation exists between the retention shown by porous graphitic carbons (PGC) and analyte hydrophobicity, but highly polar analytes are in general much more strongly retained than by any other sorbent. The potential of PGC for both the extraction and the separation of analytes is shown. Due to the difference in separation mechanism, PGC is the analytical phase that should be used for confirmation of the identity of analytes instead of a cyanopropylsilica column as recommended in some environmental procedures. Applications are presented for the trace‐determination of triazines and polar degradation products in ground and surface water with detection limits below the 0.1 μg/L level.  相似文献   

19.
Two novel types of crown ether capped β‐cyclodextrin (β‐CD) bonded silica, namely, 4′‐aminobenzo‐X‐crown‐Y (X=15, 18 and Y=5, 6, resp.) capped [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy] propylsilyl‐appended silica, have been prepared and used as stationary phases in capillary electrochromatography (CEC) to separate chiral compounds. The two stationary phases have a chiral selector with two recognition sites: crown ether and β‐CD. They exhibit excellent enantioselectivity in CEC for a wide range of compounds. After inclusion of metal ions (Na+ or K+) from the running buffer into the crown ether units, the stationary phases become positively charged and can provide extra electrostatic interaction with ionizable solutes and enhance the dipolar interaction with polar neutral solutes. This enhances the host‐guest interaction with the solute and improves chiral recognition and enantioselectivity. Due to the cooperation of the anchored β‐CD and the crown ether, this kind of crown ether capped β‐CD bonded phase shows better enantioselectivity than either β‐CD‐ or crown ether bonded phases only. These new types of stationary phases have good potential for fast chiral separation with CEC.  相似文献   

20.
A new kind of monolithic capillary electrochromatography column with poly(styrene‐co‐divinylbenzene‐co‐methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically. The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed‐phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号