首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique for constructing monotone, high resolution, multi‐dimensional upwind fluctuation distribution schemes for the scalar advection equation is presented. The method combines the second‐order Lax–Wendroff scheme with the upwind positive streamwise invariant (PSI) scheme via a fluctuation redistribution step, which ensures monotonicity (and which is a generalization of the flux‐corrected transport approach for fluctuation distribution schemes). Furthermore, the concept of a distribution point is introduced, which, when related to the equivalent equation for the scheme, leads to a ‘preferred direction’ for the limiting procedure, and hence to a new distribution of the fluctuation, which retains second‐order accuracy from the Lax–Wendroff scheme, even when the solution contains turning points. Experimental comparisons show that the new method compares favourably in terms of speed, accuracy and robustness with other, similar, techniques. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes a central‐difference interface‐capturing scheme applied to the prediction of flows with cavitation. Compressible cavitation schemes based on standard central‐difference solvers have been previously described, but the current scheme uses an incompressible formulation only previously implemented with an upwind solver. The central‐difference solver offers significant advantages in computational time compared with upwind schemes. Regions of cavitation are captured rather than tracked. This means that there is no need for complex tracking and reconstruction procedures for the interface of the cavitation region. The use of such schemes on an arbitrarily unstructured mesh is no more complicated than on its structured counterpart. Results for a number of test cases are presented, with comparisons made with both experimental data and other numerical solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme. The project supported by the National Key Program for Developing Basic Sciences (G1999043408 and G1998040901-1) and the National Natural Sciences Foundation of China (40175024 and 40035010)  相似文献   

4.
This paper presents a new volume of fluid (VOF) advection algorithm, termed the defined donating region (DDR) scheme. The algorithm uses a linear piecewise method of free surface reconstruction, coupled to a fully multi‐dimensional method of cell boundary flux integration. The performance of the new scheme has been compared with the performance of a number of alternative schemes using translation, rotation and shear advection tests. The DDR scheme is shown to be generally more accurate than linear constant and flux limited schemes, and comparable with an alternative linear piecewise scheme. The DDR scheme conserves fluid volume rigorously without local redistribution algorithms, and generates no fluid ‘flotsam’ or other debris, making it ideal in applications where stability of the free surface interface is paramount. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The upwind leapfrog method for the advection equation, which is non‐dissipative and very accurate, is extended to higher‐order and multiple dimensions. The higher‐order version is developed by extending the stencil into space and time, and an analysis of the phase error is given. The schemes are then successfully applied to the classical test cases of rotating flow, and to a more realistic problem of non‐uniform advection. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The propagation, runup and rundown of long surface waves are numerically investigated, initially in one dimension, using a well‐balanced high‐resolution finite volume scheme. A conservative form of the nonlinear shallow water equations with source terms is solved numerically using a high‐resolution Godunov‐type explicit scheme coupled with Roe's approximate Riemann solver. The scheme is also extended to handle two‐dimensional complex domains. The numerical difficulties related to the presence of the topography source terms in the model equations along with the appearance of the wet/dry fronts are properly treated and extended. The resulting numerical model accurately describes breaking waves as bores or hydraulic jumps and conserves volume across flow discontinuities. Numerical results show very good agreement with previously presented analytical or asymptotic solutions as well as with experimental benchmark data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A new wetting and drying algorithm for numerical modeling free‐surface flows is proposed and analyzed. A well structured, mildly nonlinear system for the discrete water surface elevation is derived from the governing differential equations by requiring a correct mass balance in wet areas as well as in the region of transition from wet to dry and from dry to wet. Existence and uniqueness of the numerical solution, along with a convergence analysis of an iterative scheme for the mildly nonlinear system, is provided. The present algorithm is devised to use high‐resolution bathymetric data at subgrid level. The resulting model is quite efficient, does not require a threshold value for minimal water depth, does not produce un‐physical negative water depths and generates accurate results with relatively coarse mesh and large time step size. These features are illustrated on a severe test‐case with known analytical solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The effectiveness and usefulness of further enhancing the shock resolution of a second‐order accurate scheme for open‐channel flows by using an adaptive grid is investigated. The flux‐difference‐splitting (FDS) scheme based on the Lax–Wendroff numerical flux is implemented on a fixed as well as on a self‐adjusting grid for this purpose. The grid‐adjusting procedure, developed by Harten and Hyman, adjusts the grid by averaging the local characteristic velocities with respect to the signal amplitude in such a way that a shock always lies on a mesh point. This enables a scheme capable of perfectly resolving a stationary shock to capture a shock that moves from mesh point to mesh point. The Roe's approximate Jacobian is used for conservation and consistency, while theoretically sound treatment for satisfying entropy inequality conditions ensures physically realistic solutions. Details about inclusion of source terms, often left out of analyses for the homogeneous part of governing equations, are also explained. The numerical results for some exacting problems are compared with analytical as well as experimental results for examining improvements in resolution of discontinuities by the adaptive grid. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A method for computing low Mach number flows using high‐resolution interpolation and difference formulas, within the framework of the Marker and Cell (MAC) scheme, is presented. This increases the range of wavenumbers that are properly resolved on a given grid so that a sufficiently accurate solution can be obtained without extensive grid refinement. Results using this scheme are presented for three problems. The first is the two‐dimensional Taylor–Green flow which has a closed form solution. The second is the evolution of perturbations to constant‐density, plane channel flow for which linear stability solutions are known. The third is the oscillatory instability of a variable density plane jet. In this case, unless the sharp density gradients are resolved, the calculations would breakdown. Under‐resolved calculations gave solutions containing vortices which grew in place rather than being convected out. With the present scheme, regular oscillations of this instability were obtained and vortices were convected out regularly. Stable computations were possible over a wider range of sensitive parameters such as density ratio and co‐flow velocity ratio. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

10.
A new hybrid scheme is proposed, which combines the improved third‐order weighted essentially non‐oscillatory (WENO) scheme presented in this paper with a fourth‐order central scheme by a novel switch. Two major steps have been gone through for the construction of a high‐performance and stable hybrid scheme. Firstly, to enhance the WENO part of the hybrid scheme, a new reference smoothness indicator has been devised, which, combined with the nonlinear weighting procedure of WENO‐Z, can drive the third‐order WENO toward the optimal linear scheme faster. Secondly, to improve the hybridization with the central scheme, a hyperbolic tangent hybridization switch and its efficient polynomial counterpart are devised, with which we are able to fix the threshold value introduced by the hybridization. The new hybrid scheme is thus formulated, and a set of benchmark problems have been tested to verify the performance enhancement. Numerical results demonstrate that the new hybrid scheme achieves excellent performance in resolving complex flow features, even compared with the fifth‐order classical WENO scheme and WENO‐Z scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier–Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1‐D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion‐based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non‐Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas‐solid flow in a bubbling fluidized bed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
An upstream flux‐splitting finite‐volume (UFF) scheme is proposed for the solutions of the 2D shallow water equations. In the framework of the finite‐volume method, the artificially upstream flux vector splitting method is employed to establish the numerical flux function for the local Riemann problem. Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed scheme satisfying entropy condition is extended to be second‐order‐accurate using the MUSCL approach. The proposed UFF scheme and its second‐order extension are verified through the simulations of four shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the circular dam breaking, and the dam‐break experiment with 45° bend channel. Meanwhile, the numerical performance of the UFF scheme is compared with those of three well‐known upwind schemes, namely the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably well for shallow water flows. The simulated results also show that the UFF scheme has superior overall numerical performances among the schemes tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This work investigates a high‐order numerical method which is suitable for performing large‐eddy simulations, particularly those containing wall‐bounded regions which are considered on stretched curvilinear meshes. Spatial derivatives are represented by a sixth‐order compact approximation that is used in conjunction with a tenth‐order non‐dispersive filter. The scheme employs a time‐implicit approximately factored finite‐difference algorithm, and applies Newton‐like subiterations to achieve second‐order temporal and sixth‐order spatial accuracy. Both the Smagorinsky and dynamic subgrid‐scale stress models are incorporated in the computations, and are used for comparison along with simulations where no model is employed. Details of the method are summarized, and a series of classic validating computations are performed. These include the decay of compressible isotropic turbulence, turbulent channel flow, and the subsonic flow past a circular cylinder. For each of these cases, it was found that the method was robust and provided an accurate means of describing the flowfield, based upon comparisons with previous existing numerical results and experimental data. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

14.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   

15.
We present a numerical scheme for the calculation of incompressible three‐dimensional boundary layers (3DBL), designed to take advantage of the 3DBL model's overall hyperbolic nature, which is linked to the existence of wedge‐shaped dependence and influence zones. The proposed scheme, explicit along the wall and implicit in the normal direction, allows large time steps, thus enabling fast convergence. In order to keep this partly implicit character, the control volumes for the mass and momentum balances are not staggered along the wall. This results in a lack of numerical viscosity, making the scheme unstable. The implementation of a numerical diffusion, suited to the local zone of influence, restores the stability of the boundary layer scheme while preserving second‐order space accuracy. The purpose of this article is to present the analytical and numerical studies carried out to establish the scheme's accuracy and stability properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with the introduction of a multiresolution strategy into the semi‐intrusive scheme, recently introduced by the authors, aiming to propagate uncertainties in unsteady compressible fluid applications. The mathematical framework of the multiresolution setting is presented for the cell‐average case, and the coupling with the semi‐intrusive scheme is described from both the theoretical and algorithmic point‐of‐view. Some reference test cases are performed to demonstrate the convergence properties and the efficiency of the overall scheme: the linear advection problem for both smooth and discontinuous initial conditions, the inviscid Burgers equation, and an uncertain shock tube problem obtained by modifying the well‐known Sod shock problem. For all the cases, the convergence curves are computed with respect to semi‐analytical (exact) solutions. In the case of the shock tube problem, an original technique to obtain a reference highly‐accurate numerical stochastic solution has also been developed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A high‐order triangular discontinuous Galerkin (DG) method is applied to the two‐dimensional oceanic shallow water equations. The DG method can be characterized as the fusion of finite elements with finite volumes. This DG formulation uses high‐order Lagrange polynomials on the triangle using nodal sets up to 15th order. Both the area and boundary integrals are evaluated using order 2N Gauss cubature rules. The use of exact integration for the area integrals leads naturally to a full mass matrix; however, by using straight‐edged triangles we eliminate the mass matrix completely from the discrete equations. Besides obviating the need for a mass matrix, triangular elements offer other obvious advantages in the construction of oceanic shallow water models, specifically the ability to use unstructured grids in order to better represent the continental coastlines for use in tsunami modeling. In this paper, we focus primarily on testing the discrete spatial operators by using six test cases—three of which have analytic solutions. The three tests having analytic solutions show that the high‐order triangular DG method exhibits exponential convergence. Furthermore, comparisons with a spectral element model show that the DG model is superior for all polynomial orders and test cases considered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present a computationally efficient semi‐implicit scheme for the simulation of three‐dimensional hydrostatic free surface flow problems on staggered unstructured Voronoi meshes. For each polygonal control volume, the pressure is defined in the cell center, whereas the discrete velocity field is given by the normal velocity component at the cell faces. A piecewise high‐order polynomial vector velocity field is then reconstructed from the scalar normal velocities at the cell faces by using a new high‐order constrained least‐squares reconstruction operator. The reconstructed high‐order piecewise polynomial velocity field is used for trajectory integration in a semi‐Lagrangian approach to discretize the nonlinear convective terms in the governing PDE. For that purpose, a high‐order Taylor method is used as ODE integrator. The resulting semi‐implicit algorithm is extensively validated on a large set of different academic test problems with exact analytical solution and is finally applied to a real‐world engineering problem consisting of a curved channel upstream of two micro‐turbines of a hydroelectric power plant. For this realistic case, some experimental reference data are available from field measurements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An explicit finite difference method for the treatment of the advective terms in the 2D equation of unsteady scalar transport is presented. The scheme is a conditionally stable extension to two dimensions of the popular QUICKEST scheme. It is deduced imposing the vanishing of selected components of the truncation error for the case of steady uniform flow. The method is then extended to solve the conservative form of the depth‐averaged transport equation. Details of the accuracy and stability analysis of the numerical scheme with test case results are given, together with a comparison with other existing schemes suitable for the long‐term computations needed in environmental modelling. Although with a truncation error of formal order 0(ΔxΔt, ΔyΔt, Δt2), the present scheme is shown actually to be of an accuracy comparable with schemes of third‐order in space, while requiring a smaller computational effort and/or having better stability properties. In principle, the method can be easily extended to the 3D case. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号