首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a poly(ε‐caprolactone) (PCL)‐based shape memory polyurethane fiber was prepared by melt spinning. The shape memory switching temperature was the melting transition temperature of the soft segment phase mainly composed of PCL at 47°C. The mechanical properties especially shape memory effect were explicitly characterized by thermomechanical cyclic tensile testing. The results suggest that the prepared fiber has shape memory effects. The prepared 40 denier shape memory fiber had a tenacity of about 1.0 cN/dtex, and strain at break 562–660%. The shape fixity ratio reached 84% and the recovery ratio reached 95% under drawing at high temperature and thermal recovery testing.1 Finally, the fiber thermal/mechanical properties were measured using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Remembering more than one permanent shape is an attractive research topic for shape memory materials (SMMs). In this paper, multiple crystalline shape memory polyurethanes (SMPUs) are prepared with PCL10000 and PTMG2900 by a three‐step polymerization method. DSC and WAXD results show that the obtained polyurethane contains, simultaneously and independently, two kinds of crystals. In addition, it is confirmed through DMA analysis that reversible soft phase and hard domains are formed in the PCL‐PTMG based SMPU system; and two‐step modulus decreases at low temperature range can be obtained in the SMPU with suitable mass proportion of PCL to PTMG, e.g., 1:7. Thus, shape memory effect (SME) can be achieved in this system. Moreover, it is found that the PTMG soft segment dominates the shape memory effect when the PCL mass is lower than that of PTMG; while the PCL soft segment dominates the SME when PCL mass is higher than that of PTMG; and a two‐step programing shape recovery can be achieved when the mass proportion of PCL/PTMG reaches a balance value, e.g., 3:5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of cationic groups within hard segments on shape memory polyurethane (SMPU) fibers was studied and the cyclic tensile testing was conducted to assess the shape memory effect. Mechanical properties, hard segment crystallization, and dynamic mechanical properties of SMPU ionomer fibers composed of 1,4‐butanediol (BDO), N‐methyldiethanolamine (NMDA), 4,4′‐methylenebis(phenyl isocyanate) (MDI), and poly(butylene adipate)diol (PBA) were investigated using a universal tensile tester, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results demonstrate that only 2 wt% NMDA can significantly change the glass transition temperature of the soft segment phase. DSC shows that the ionic group within hard segments can facilitate the crystallization of hard segments in unsteamed SMPU ionomer fibers. But for steamed fiber specimens, this effect is insignificant. Moreover, the ionic groups in hard segments with different hard segment contents (HSC) have different effects. In unsteamed fibers with 64 wt% HSC, 2 wt% NMDA increases the glass transition of soft segments from 63.5 to 70.6°C. However, in fibers with 55 wt% HSC, the glass transition temperature is lowered from 46.7 to 33.5°C. The post‐treatment, high‐pressure steaming is an effective way to remove the internal stress and subsequently improve the dimensional stability of SMPU ionomer fibers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005  相似文献   

5.
Poly(ε‐caprolactone) (PCL) with a pendent coumarin group was prepared by solution polycondensation from 7‐(3,5‐dicarboxyphenyl) carbonylmethoxycoumarin dichloride and α, ω‐dihydroxy terminated poly(ε‐caprolactone) with molecular weights of 1250, 3000, and 10,000 g/mol. These photosensitive polymers underwent a rapid reversible photocrosslinking upon exposure to irradiation with alternating wavelengths (>280/254 nm) without a photoinitiator. The thermal and mechanical properties of the photocrosslinked films were examined by means of differential scanning calorimetry and stress–strain measurements. The crosslinked films exhibited elastic properties above the melting temperature of the PCL segment along with significant decrease in the ultimate tensile strength and Young's modulus. Shape‐memory properties such as strain fixity ratio (Rf) and strain recovery ratio (Rr) were determined by means of a cyclic thermomechanical tensile experiments under varying maximum strains (εm = 100, 300, and 500%). The crosslinked ICM/PCL‐3000 and ‐10,000 films exhibited the excellent shape‐memory properties in which both Rf and Rr values were 88–100% for tensile strain of 100–500%; after the deformation, the films recovered their permanent shapes instantaneously. In vitro degradation was performed in a phosphate buffer saline (pH 7.2) at 37 °C with or without the presence of Pseudomonas cepacia lipase. The presence of the pendent coumarin group and the crosslinking of the polymers pronouncedly decreased the degradation rate. The crosslinked biodegradable PCL showing a good shape‐memory property is promising as a new material for biomedical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2422–2433, 2009  相似文献   

6.
In this study, in situ polyurethane (PU) bionanocomposites of poly(ethylene glycol) (PEG)/poly(ε‐caprolactone) (PCL) polyols, bare cellulose nanocrystals (CNCs) and PCL‐grafted CNCs (G‐CNC) were synthesized with different contents of CNCs as cross‐linking agent to control the extent of phase separation. The effect of confining the chains between CNCs through urethane linkages and presence of PCL grafts on phase and crystallization behavior was evaluated. Crystallization and chemical networking were controlled to tune the shape fixity (SF) and recovery (SR) of the specimens, resulting in a SF of 100% for linear and PU nanocomposites of G‐CNC (0.5% and 1%) samples. The PU nanocomposite of G‐CNC (0.5%) was selected as the optimum sample with the highest SR of 100%. The effect of surface hydrophobicity on cellular behavior of Human Foreskin Fibroblast (as a normal cell) and HepG2 (as a cancerous cell) cells was evaluated. Cell adhesion analysis of the prepared samples indicated two different behaviors possibly due to the difference in the epigenetic nature of the cells and cellular integrin‐ based bonds showing a great potential for a variety of tissue engineering applications.  相似文献   

7.
Epoxies are an important family of shape memory polymers (SMP) due to their excellent stability and thermo-mechanical endurance and the high values of shape fixity and shape recovery. Actuators based on these materials can be designed for large tensile elongations (e.g., 75% or higher) or large recovered stresses (e.g., 3 MPa or higher). However, meeting these requirements simultaneously is a difficult task because changes in the crosslink density affect both variables in opposite ways. We show that an SMP based on an epoxy network with both chemical and physical crosslinks could be strained up to 75% in four repeated shape memory cycles with tensile stresses close to 3 MPa. Shape fixity and shape recovery values were close to 98% and 96%, respectively, for everyone of the cycles, without any significant change between the first and subsequent cycles.  相似文献   

8.
《先进技术聚合物》2018,29(7):2010-2024
Rare studies have investigated on the 2‐way shape memory crosslinked blends with multiple shape memory behavior up to date. To consider the merit of commercial cost‐competitive crystalline polymers, ethylene vinyl‐acetate copolymer (EVA) / polycaprolactone (PCL) blends (60/40 and 30/70) were peroxide‐cured to form the 2‐way multi‐shape memory crosslinked blends using a melt‐blending method. Both resins were selected to have a similar controlled crosslinking degree, which allowed us to distinctly evaluate their actuation contributions from the cooling‐induced elongation (crystallization) and from the entropy‐driven elongation during cooling process, respectively. In the 2‐way process for the 60/40 system, 2 respective peaks contributed from the cooling‐induced crystallization of EVA and PCL in the cooling curves based on the strain derivate rates at various temperatures were observed. After the cooling process under the loading stress of 150 kPa, the 2‐step heating‐induced contraction process with increasing temperature started at 54.1°C above the melting temperature of PCL at 52.3°C and EVA at 78.3°C, demonstrating 2‐way multi‐shape memory behavior. The multi‐step behavior was more prominent at higher PCL composition and higher load for the 30/70 system. It was found that the entropy‐driven contribution to the overall actuation magnitude increased with increasing nominal loads due to the increased orientation of molecular networks in the blends. The current approach offers numerous possibilities in preparing 2‐way multi‐shape memory crosslinked blends.  相似文献   

9.
A facile method to prepare shape memory polymers crosslinked by SiO2 is described. A series of biodegradable shape memory networks were obtained through thiol‐ene reaction triggered by UV irradiation between surface‐thiol‐modified SiO2 nanoparticles and end‐acrylate poly (ε‐caprolactone) (PCL). The highly selective thiol‐ene reaction ensured a uniform distribution of PCL chains between crosslinkers, contributing well‐defined network architecture with enhanced mechanical and shape‐memory properties. Thiol‐functionalized silica nanoparticle was characterized by using FTIR and XPS analysis, and 1H NMR spectra was used to confirm the successful modification of terminal hydroxyl group of PCL diol. Surface‐modified silica particles were found well dispersible in acrylate‐capped PCL supported by SEM. Thermal and crystalline behaviors of the obtained polymers were analyzed by DSC and XRD, and DMA measurement proved good mechanical property. The shape memory behavior and tensile strength was somewhat tunable by the length of PCL. Acceptably, sample SiO2‐SMP2k presented 99% recovery ratio and 97% shape fixity, and its relatively high tensile strength showed an attractive potential for biomedical application. Finally, a possible molecular mechanism accounting for the shape memory property was illustrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 692–701  相似文献   

10.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

11.
SHAPE MEMORY EFFECT OF PU IONOMERS WITH IONIC GROUPS ON HARD-SEGMENTS   总被引:1,自引:0,他引:1  
SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content.  相似文献   

12.
This article reports a chromic polymer, which is responsive to its shape memory properties and has both the behavior of shape memory polymers and chromic materials. We employed a strategy to fabricate such a smart material, which represents a new principle for making chromic materials. This material is made of shape memory polyurethane with tetraphenylethylene units (0.1 wt %) covalently connected to the soft‐segments (PCL, Mw = 4000). The material displays biocompatibility, shape fixity of 88–93%, and almost 100% shape recovery and has reversible mechanochromic, solvatochromic, and thermochromic shape memory effect. The memory chromism represented by the reversible change of emission intensity shows negative correlation with shape fixity, temperature, and existence of solvent. It may be explained that when the soft segments are molten or dissolved in solvent, the shape recovery switch is open, the AIE units are free from crystal binding and can migrate easily to larger areas, thus the AIE units/particles are far apart from each other and the barrier for rotation of phenyl groups is reduced, which lead to the reduction of emission intensity, appeared by no colors or pale colors, and vice versa. Since the switch is a fundamental structural character of SMPs, the shape memory properties have led to the chromism and we call this memory chromic. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 104–110  相似文献   

13.
A novel pH sensitive shape‐memory polymer (SMP) is prepared by cross‐linking the β‐cyclodextrin modified alginate (β‐CD‐Alg) and diethylenetriamine modified alginate (DETA‐Alg): The pH reversible β‐CD‐DETA inclusion complexes serve as a reversible phase, and the cross‐linked alginate chains serve as a fixing phase. It is shown that this material can be processed into temporary shape as we needs at pH 11.5 and recover to its initial shape at pH 7. The recovery ratio and the fixity ratio were 95.7 ± 0.9% and 94.8 ± 1.1%, respectively. Furthermore, this material showed good degradability and biocompatibility. Because the shape transition pH value is quite close to that of our body fluid and this pH triggered shape‐memory effect is convenient and safe to use, this material has a high potential for medical application.  相似文献   

14.
《先进技术聚合物》2018,29(1):190-197
This paper proposes a new technique for the preparation of foamed Eucommia ulmoides gum (EUG)/high‐density polyethylene (HDPE) shape memory composites and establishes the relationship between structures and properties in foamed shape memory composites. Eucommia ulmoides gum/HDPE shape memory composites are designed to memorize 2 temporary shapes by exploiting the different melting points of the 2 phases; the triple shape memory effect in the composites is investigated via mechanical measurements, thermal analysis, and shape memory behavior analysis. The results show that HDPE phase enables the composites to effectively memorize the first temporary shape and EUG phase contributes the second temporary shape. When the ratios of EUG and HDPE were 80/20 and 70/ 30, the composite exhibited satisfactory shape memory behavior with favorable shape fixity ratio and shape recovery ratio, in addition to excellent mechanical properties (tensile strength of 15 MPa, tear strength above 51 KN/m, and foam porosity of about 11%).  相似文献   

15.
Herein, the electrospinning method, as an effective approach, was utilized to fabricate poly (ε‐caprolactone)‐based polyurethane (PCL‐based PU) fibers. PCL was synthesized by ring‐opening polymerization, and characterized by proton nuclear magnetic resonance (1H NMR) and Fourier‐transform infrared (FTIR) spectroscopies. Afterward, PU was prepared by step‐growth polymerization. The effects of solution concentration and solvent type on fibers' diameter were investigated. Scanning electron microscopy (SEM) images revealed that the optimum solution was N, N‐dimethylformamide(DMF): chloroform with a ratio of 60:40. In addition, results showed that bead‐less nanofibers could be achieved by a concentration of 5 w/v% (polymer to solvent). Various optimum practical parameters, such as applied voltage, feeding rate, and needle‐to‐collector distance, were obtained and compared with the results of response surface methodology (RSM). On the other hand, the mechanical evaluations indicated that the porous structure of scaffolds caused them to possess lower mechanical properties, as well as shape fixity ratios than those of bulk samples.  相似文献   

16.
The present communication reports a novel strategy to fabricate reversible shape‐memory polymer that operates without the aid of external force on the basis of a two‐phase structure design. The proof‐of‐concept material, crosslinked styrene‐butadiene‐styrene block copolymer (SBS, dispersed phase)/polycaprolactone‐based polyurethane (PU, continuous phase) blend, possesses a closely connected microphase separation structure. That is, SBS phases are chemically bonded to crosslinked PU by means of a single crosslinking agent and two‐step crosslinking process for increasing integrity of the system. Miscibility between components in the blend is no longer critical by taking advantage of the reactive blending technique. It is found that a suitable programming leads to compressed SBS, which serves as internal expansion stress provider as a result. The desired two‐way shape‐memory effect is realized by the joint action of the temperature‐induced reversible opposite directional deformabilities of the crystalline phase of PU and compressed SBS, accompanying melting and orientated recrystallization of the former. Owing to the broadness of material selection and manufacturing convenience, the proposed approach opens an avenue toward mass production and application of the smart polymer.  相似文献   

17.
Biodegradable polylactide (PLA) and its copolymers with shape memory properties have attracted great interests because of their important application prospects in biomedical field. In this study, random poly(L‐lactide‐co‐trimethylene carbonate‐co‐ε‐caprolactone) (LTCL) terpolymers with different molar ratio were synthesized and characterized. Monomer ε‐caprolactone (ε‐CL) was used in this study instead of glycolide in preliminary study of LTG terpolymers to investigate the transition temperature and the shape memory performance. Characterization on crystallization, mechanical properties, shape fixing, and recovery ratios of the terpolymers was conducted to investigate the correlation between crystallization and shape memory performance of LTCL terpolymers. The results are consistent with the formation of crystallized LLA segments, which could act as crosslinks, strengthened the stationary phase within the polymer matrix, and significantly improved the shape memory performance of LTCL terpolymers. For example, LTCL801010 is a crystalline polymer with high shape fixity and shape recovery ratio; its shape recovery temperature is 39°C. LTCL terpolymers with high CL content do not show shape memory performance for the rubbery at room temperature. Based on this study, PLA materials with shape memory property can be designed through the selection of monomers or the adjustment of comonomer ratio. These polymers with recovery temperature close to 37°C are expected to be used in human body such as scaffolds in tissue engineering.  相似文献   

18.
A group of shape memory polyurethane‐based nanocomposites containing graphene quantum dot nanoparticles (GQDs) were prepared via in‐situ polymerization method. GQD nanoparticles were synthesized by a facile and rapid microwave‐assisted method and characterized by Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction pattern, field emission scanning microscopy, transmission electron microscopy, and fluorescence analysis. Chemical structure and hydrogen bonding index (HBI[C=O]) of the nanocomposites were analyzed via FTIR spectra. The results show that the incorporation of GQDs in PU matrix reduces HBI(C=O) of nanocomposites. Crystalline structure and thermal properties of the nanocomposites were investigated by differential scanning calorimetry. As results indicate, nucleation effect of GQDs raises crystallinity content of the samples. Mechanical examinations indicate that incorporation of GQDs improves Young's modulus of the nanocomposites, while their elongation at break values are reduced. In addition, shape memory analyses reveal that the presence of GQDs in PU matrix increases the shape fixity ratios in nanocomposites.  相似文献   

19.
Composites with excellent water‐induced shape‐memory effects (SMEs) were successfully synthesized by first using clay as the SME‐activating phase and thermoplastic polyurethane (TPU) as the matrix. Naturally abundant clay was grafted with poly(methacrylic acid) (PMAA) to improve particle interactions, which allowed for the formation of strong percolation networks in the composites, determined by swelling tests and dynamic mechanical analysis in combination with theoretical modeling. This led to significant improvements of the polymer modulus and high water absorptions, causing reversible modulus changes of up to 30 times from the wet to the dry condition. The results from cyclic wetting‐drying‐stretching tests showed the TPU–clay composite containing 10.4 vol % PMAA‐grafted clay exhibited the best SMEs among the composites investigated, with the shape fixity and shape recovery ratios being 82% and 91%, respectively. Besides SMEs, these new polymer–clay composites were also pH‐sensitive and mechanically adaptive upon exposure to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1513–1522  相似文献   

20.
Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε‐caprolactone) (PCL)‐based polyurethane ureas (PUUs) containing a novel phenylalanine‐derived chain extender is synthesized. The phenylalanine‐derived chain extender, phenylalanine‐hexamethylenediamine‐phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization‐melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号