首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The positron annihilation lifetime measurements have been performed on a number of amorphous styrene–methyl acrylate copolymers and styrene–butyl methacrylate copolymers. The densities of copolymers were obtained with immersion method by using a capillary pycnometer and the average molecular weights were determined by gel chromatography. The lifetime τ3 of ortho‐positronium (o‐Ps) pick‐off annihilation have been found to correlate with side group volume and polarity of macromolecular chains in the copolymers, and relative intensity I3 is attributed mainly to the electron‐attracting groups trapping the spur electrons and positrons. The experimental results have been discussed on the basis of the structural variation of macromolecular chains. In addition, the PALS measurement as a function of time for polystyrene and several styrene–methyl acrylate copolymers has also been performed. The result shows that an electric field is built in polymers during extended positron annihilation spectroscopy measurement, and the field effect is a main factor which causes the decrease in I3 with time. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2476–2485, 1999  相似文献   

2.
An amorphous, organosoluble, fluorine‐containing polybenzimidazole (PBI) was synthesized from 3,3′‐diaminobenzidine and 2,2‐bis(4‐carboxyphenyl)hexafluoropropane. The polymer was soluble in N‐methylpyrrolidinone and dimethylacetamide and had an inherent viscosity of 2.5 dL/g measured in dimethylacetamide at a concentration of 0.5 g/dL. The 5% weight loss temperature of the polymer was 520 °C. Proton‐conducting PBI membranes were prepared via solution casting and doped with different amounts of phosphoric acid. In the methanol permeability measurement, the PBI membranes showed much better methanol barrier ability than a Nafion membrane. The proton conductivity of the acid‐doped PBI membranes increased with increasing temperatures and concentrations of phosphoric acid in the polymer. The PBI membranes showed higher proton conductivity than a Nafion 117 membrane at high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4508–4513, 2006  相似文献   

3.
Phosphonic acid‐bearing styrene–ethylene/butylene–styrene (SEBS) block copolymer was synthesized by bromination and subsequent palladium‐catalyzed phosphonation of SEBS. The phosphonated block copolymer was characterized by spectroscopic, thermal, and conductivity measurements. The new polymer shows good ion‐exchange capacity of ~0.7 meq/g and proton conductivity of around 2–4 mS/cm (at room temperature and 100% relative humidity) which is in good agreement with literature value of other phosphonated materials. This value was obtained despite a relatively low degree of phosphonation, demonstrating the ability of the phase separated nature of block copolymers to promote proton conductivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5431–5441, 2008  相似文献   

4.
Throughout this work, the synthesis, thermal as well as proton conducting properties of acid doped heterocyclic polymer were studied under anhydrous conditions. In this context, poly(1‐vinyl‐1,2,4‐triazole), PVTri was produced by free radical polymerization of 1‐vinyl‐1,2,4‐triazole with a high yield. The structure of the homopolymer was proved by FTIR and solid state 13C CP‐MAS NMR spectroscopy. The polymer was doped with p‐toluenesulfonic acid at various molar ratios, x = 0.5, 1, 1.5, 2, with respect to polymer repeating unit. The proton transfer from p‐toluenesulfonic acid to the triazole rings was proved with FTIR spectroscopy. Thermogravimetry analysis showed that the samples are thermally stable up to ~250 °C. Differential scanning calorimetry results illustrated that the materials are homogeneous and the dopant strongly affects the glass transition temperature of the host polymer. Cyclic voltammetry results showed that the electrochemical stability domain extends over 3 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Charge transport relaxation times were derived via complex electrical modulus formalism (M*). The temperature dependence of conductivity relaxation times showed that the proton conductivity occurs via structure diffusion. In the anhydrous state, the proton conductivity of PVTri1PTSA and PVTri2PTSA was measured as 8 × 10?4 S/cm at 150 °C and 0.012 S/cm at 110 °C, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1016–1021, 2010  相似文献   

5.
Various polyimide layers [2.2–2.6 μm of hexafluoroisopropylidene bis(phthalic anhydride‐oxydianiline), pyromellitic dianhydride‐oxydianiline, and 3,3′‐4,4′‐biphenyltetracarboxylic dianhydride‐p‐phenylenediamine] spin‐coated on silicon substrates were studied with a variable‐energy positron beam in combination with a Doppler‐broadened annihilation radiation technique. From the experiments, the thickness of the layers was estimated with the VEPFIT routine. These values corresponded well to the values determined from interferometry and ellipsometry. Irradiation of the polyimides with 1 × 1015 boron ions/cm2 at an energy of 180 keV led to a strong chemical modification of the irradiated top layer. This caused the inhibition of positronium formation in the irradiated layer, which was observed as a lowering of the annihilation line S parameter. The thickness of the modified layer was estimated to be 700–800 nm. This value did not agree with the ellipsometric measurements but corresponded to the maximum implantation depth of boron ions calculated with TRIM (Transport of Ions in Matter) code. The positron results appeared somewhat larger than the TRIM estimates. Reasons for these relations are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3062–3069, 2000  相似文献   

6.
A biodegradable diblock copolymer of poly(ϵ‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was synthesized and characterized. The inclusion compound (IC) of this copolymer with α‐cyclodextrin (α‐CD) was formed and characterized. Wide‐angle X‐ray diffraction showed that in the IC crystals α‐CDs were packed in the channel mode, which isolated and restricted the individual guest copolymer chains to highly extended conformation. Solid‐state 13C NMR techniques were used to investigate the morphology and dynamics of both the bulk and α‐CD‐IC isolated PCL‐b‐PLLA chains. The conformation of the PCL blocks isolated within the α‐CD cavities was similar to the crystalline conformation of PCL blocks in the bulk copolymer. Spin–lattice relaxation time (T1C) measurements revealed a dramatic difference in the mobilities of the semicrystalline bulk copolymer chains and those isolated in the α‐CD‐IC channels. Carbon‐observed proton spin–lattice relaxation in the rotating frame measurements (TH) showed that the bulk copolymer was phase‐separated, while, in the IC, exchange of proton magnetization through spin‐diffusion between the isolated guest polymer chains and the host α‐CD was not complete. The two‐dimensional solid‐state heteronuclear correlation (HetCor) method was also employed to monitor proton communication in these samples. Intrablock exchange of proton magnetization was observed in both the bulk semicrystalline and IC copolymer samples at short mixing times; however, even at the longest mixing time, interblock proton communication was not observed in either sample. In spite of the physical closeness between the isolated included guest chains and the host α‐CD molecules, efficient proton spin diffusion was not observed between them in the IC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2086–2096, 2005  相似文献   

7.
Seven different fluoropolymer films were used as matrix materials for radiation‐grafted ion‐exchange membranes. The crystallinity and preferred orientation of these membranes were studied with wide‐angle X‐ray scattering, and the lamellar structure of the membranes was examined with small‐angle X‐ray scattering. The crystallinity of poly(vinylidene fluoride) (PVDF)‐based matrix materials varied between 57 and 40%, and the crystallinity of the sulfonated samples varied between 34 and 23%. The lamellar periods of PVDF‐based matrix materials were about 115 Å, and the lamellar periods of poly(ethylene‐alt‐tetrafluoroethylene) and poly(tetrafluoroethylene‐co‐hexafluoropropylene) were 250 and 212 Å, respectively. When the samples were grafted, the lamellar periods increased. Correlation function analysis showed very clearly that the long‐range order decreased because of grafting and sulfonation processes. For those samples that showed good proton conductivity, the lamellar period also increased because of sulfonation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1539–1555, 2002  相似文献   

8.
Sulfonated polyimide (SPI)/dihydroxynaphthalene (DHN) charge‐transfer (CT) complex hybrid films were investigated as possible alternative for polymer electrolyte membranes in polymer electrolyte fuel cells. SPI/DHN CT complex hybrid films include CT complexes, which might work as electronic conductors, and sulfonic acid units, which could work as proton conductors. Therefore, the origin of the conductivity of SPI/DHN complex hybrid films was evaluated by four‐probe impedance measurements in the through‐plane direction of the films. The obtained conductivity of the CT complex hybrid films increased with the increase of ion exchange capacity of the CT films and the decrease of CT complex concentration in the films. These results indicated that proton transfer dominantly occurred in the CT complex hybrid films. Proton conductivity of the CT complex hybrid films consisting of 2,6‐ or 1,5‐DHN showed the similar values, although the molecular geometries of the CT complex were different. The activation energy values for proton conductivity in the CT films were approximately the same as that of Nafion 212. Water uptake (WU) results were also conducted and suggest that CT complex formation could control the degree of WU of the films and prevent dissolution of SPI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2991–2997  相似文献   

9.
We prepared novel proton‐conductivity membranes based on blends of sulfonated polyimides. The blend membranes were prepared from a sulfonated homopolyimide and a sulfonated copolyimide with a solvent‐casting method. The proton conductivities of the blend membranes were measured as functions of the temperature with four‐point‐probe electrochemical impedance spectroscopy. The conductivity of the membranes strongly depended on the sulfonated homopolyimide content and increased with an increase in the content. The proton conductivity of all the blended membranes indicated a higher value than that determined in Nafion at 80 °C, and this may mean that the proton transfer in the blend membranes is responsible for the ionic channels induced by the hydrophobic and hydrophilic domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1325–1332, 2007  相似文献   

10.
To elucidate the driving forces for phase separation and proton conductivity in polystyrenic alkoxy 1H‐tetrazole (PS‐Tet), an analogous polystyrenic alkoxy carboxylic acid (PS‐HA) was synthesized and the conductivity and chain dynamics of both materials measured. Proton and polymer motions illustrate dramatic differences in the nonaqueous behavior of carboxylic acids and 1H‐tetrazoles, belying similarities in their aqueous properties. Exceptional interactions between 1H‐tetrazoles drive phase separation not observed in PS‐HA or reported for other azole‐containing homopolymers. PS‐HA and PS‐Tet exhibit both dry (0% relative humidity) and hydrated proton dissociations proportional to their aqueous pKas, with residual water acting as the proton acceptor in both polymers. While water is the sole contributor to mobility in PS‐HA, PS‐Tet exhibits dynamic interactions with water allowing 1H‐tetrazole moieties to contribute to proton conduction even in the hydrated state. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1375–1387  相似文献   

11.
The effect of electron‐beam (4–8 MeV) irradiation on the ionic conductivity of a solid polymer electrolyte, poly(ethylene glycol) complexed with LiClO4, was studied. A large enhancement of the conductivity of nearly two orders of magnitude was observed for the highest dose of irradiation (15 kGy) used. The samples were characterized with differential scanning calorimetry, matrix‐assisted laser desorption/ionization, and electron spin resonance spectroscopy. Although no free radicals were present in the irradiated samples, a decrease in the glass‐transition temperature and an increase in the amorphous fraction were observed. Even though pure poly(ethylene glycol) underwent considerable fragmentation, unexpectedly, no significant fragmentation was observed in the polymer–salt complexes. The enhancement of the conductivity was attributed to an increase in the amorphous fraction of the systems and also to an increase in the flexibility of the polymer chains due to the irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1299–1311, 2004  相似文献   

12.
Bionanocomposites of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (P3HB3HHx) (13 % by mol of HHx) with multiwalled carbon nanotubes (MWCNTs) were prepared to obtain semiconductive nanocomposites for potential applications as scaffolds for nerve repair. The effect of the polymer/nanotube interface on the composite properties was studied using oxidized (oxi‐MWCNTs) and surface modified MWCNTs with low‐molecular weight P3HB3HHx (pol‐MWCNTs), in a ratio from 0.3 to 1.2 wt % for each type of MWCNTs employed. Morphology and conductive properties of the composites indicated a good interaction between pol‐MWCNTs and the polymer matrix. Composites with improved conductivity were obtained with only 0.3 wt % of pol‐MWCNTs added. However, agglomeration and lower conductivity was observed for samples with oxi‐MWCNTs. Cell viability studies carried out with neurospheres showed that samples with 1.2 wt % of pol‐MWCNTs are not cytotoxic and, in addition favors the neurospheres growth on the composite surface. Considering the electrical properties and biological behavior, nanocomposites of P3HB3HHx and pol‐MWCNTs are promising substrates for the regeneration of nerve tissue. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 349–360  相似文献   

13.
In this work, poly(4‐vinylbenzylboronic acid‐co‐4(5)‐vinylimidazole) (poly(4‐VBBA‐co‐4‐Vim)) copolymers were synthesized by free‐radical copolymerization of the monomers 4‐VBBA and 4‐Vim at various monomer feed ratios. The copolymers were characterized by 1H MAS NMR and 11B MQ‐MAS NMR methods and the copolymer composition was determined via elemental analysis. The membrane properties of these copolymers were investigated after doping with phosphoric acid at several stoichiometric ratios. The proton exchange reaction between acid and heterocycle is confirmed by FTIR. Thermal properties of the samples were investigated via thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The morphology of the copolymers was characterized by x‐ray diffraction, XRD. The temperature dependence of proton conductivities of the samples was investigated by means of impedance spectroscopy. Proton conductivity of the copolymers increased with the doping ratio and reached to 0.0027 S/cm for poly(4‐VBBA‐co‐4‐Vim)/2H3PO4 in the anhydrous state. The boron coordination in the copolymer was determined by 11B MQ‐MAS experiment and the coexistence of three and four coordinated boron sites was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1267–1274, 2009  相似文献   

14.
A sulfonimide‐containing comonomer derived from 4,4′‐dichlorodiphenylsulfone was synthesized and copolymerized with 4,4′‐dichlorodiphenylsulfone and 4,4′‐biphenol to prepare sulfonimide‐containing poly(arylene ether sulfone) random copolymers (BPSIs). These copolymers showed slightly higher water uptake than disulfonated poly(arylene ether sulfone) copolymer (BPSH) controls, but their proton‐conductivity values were very comparable to those of the BPSH series with similar ion contents. The proton conductivity increased with the temperature for both systems. For samples with 30 mol % ionic groups, BPSI showed less temperature dependence in proton conductivity and slightly higher methanol permeability in comparison with BPSH. The thermal characterization of the sulfonimide copolymers showed that both the acid and salt forms were stable up to 250 °C under a nitrogen atmosphere. The results suggested that the presumed enhanced stability of the sulfonimide systems did not translate into higher protonic conductivity in liquid water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6007–6014, 2006  相似文献   

15.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

16.
The positrons injected into a polymer annihilate with electrons through several kinds of processes influenced by environmental conditions. The AMOC is an appropriate method to investigate the influences of functional groups in polymer on positron and positronium annihilation process. The experiments were performed for polystyrene-related materials. The results showed that the S-parameters relating to ortho-positronium were higher than those relating to free annihilation in all samples and the annihilation process was affected by functional group.  相似文献   

17.
The temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels, prepared by γ and electron‐beam (EB) irradiation, were studied using positron annihilation lifetime spectroscopy (PALS). The effect of water content in the hydrogel on the ortho‐positronium (o‐Ps) lifetime and intensity was investigated. The observed positronium lifetime suggests microstructural differences between γ‐ and EB‐synthesized hydrogels. The distribution in positronium lifetime indicates nonhomogeneity in the distribution of free‐volume holes in EB‐synthesized hydrogels. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3462–3466, 2000  相似文献   

18.
Schizophyllan (SPG) is a natural β‐1,3‐glucan that forms a triple helix (t‐SPG) in neutral aqueous solutions and t‐SPG can be denatured to single chains (s‐SPGs) in DMSO or alkaline solutions. Exchanging the denatured solutions for neutral water leads the renaturation of the triple helix. We have reported that hydrophobic molecules can form a complex with s‐SPG when they are present in the renaturation process. Some of these, for example poly(dA) and polyaniline, were found to have aromatic amino moieties. This report demonstrates whether s‐SPG can interact with other aromatic amino compounds such as anilinonaphthalene sulfonic acid (ANS) derivatives. Enhanced fluorescence intensity and red‐shifted UV absorption spectra were observed in the mixture of s‐SPG and 2,6‐ANS or 2,6‐TNS. In the circular dichroism measurement, the positive Cotton effects appeared after mixing 2, 6‐ANS with s‐SPG. When the amino proton was replaced by the methyl group or used in intramolecular hydrogen bonds, any spectral changes were not observed. These results indicate that amino proton in the ANS derivatives plays a key role in the complexation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1440–1448, 2008  相似文献   

19.
A novel highly phosphonated poly(N‐phenylacrylamide) ( PDPAA ) with an ion‐exchange capacity (IEC) of 6.72 mequiv/g was synthesized by the radical polymerization of N‐[2,4‐bis(diethoxyphosphinoyl)phenyl]acrylamide ( DEPAA ), followed by the hydrolysis with trimethylsilyl bromide. Then, the crosslinked PDPAA membrane was successfully prepared by the electrophilic substitution reaction between the aromatic rings of PDPAA and the carbocation formed from hexamethoxymethylmelamine (CYMEL) as a crosslinker in the presence of methanesulfonic acid. The crosslinked PDPAA membrane had high oxidative stability against Fenton's reagent at room temperature. The proton conductivity of the crosslinked PDPAA membrane was 8.8 × 10?2 S/cm at 95% relative humidity (RH) and 80 °C, which was comparable to Nafion 112. Under low RH, the crosslinked PDPAA membrane showed the proton conductivity of 1.9 × 10?3 and 4.7 × 10?5 S/cm at 50 and 30% RH, respectively. The proton conductivity of the crosslinked PDPAA membrane lied in the highest class among the reported phosphonated polymers, and, consequently, the very high local concentration of the acids of PDPAA (IEC = 6.72 mequiv/g) achieved high and effective proton conduction under high RH. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
One‐ and two‐dimensional xenon‐129 nuclear magnetic resonance (129Xe NMR) experiments were performed on a series of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PXE) samples to characterize the sorption environments and the relative mobility of xenon in the samples. Samples of PXE in sealed NMR tubes pressurized with xenon were studied as a function of temperature, pressure, and processing. In a dense cast film of PXE, the shift relative to the free gas resonance is smaller than that observed for typical glassy polymers, indicating a higher free volume environment. Solubility rises rapidly as temperature decreases. The lower shift and rapid increase in solubility with decreasing temperature are consistent with a relatively high free volume environment for gas sorption. If PXE is antiplasticized, the shift is slightly larger, the increase in signal intensity with decreasing temperature is smaller, and the line widths are greater. This sample is a better packed glass with less free volume and slower diffusion. Samples of PXE produced by rapid precipitation have broad lines and even lower shifts corresponding to a wide distribution of higher free volume environments. The appearance of two lines at low temperatures is consistent with the presence of a bimodal distribution of environments similar to what has been observed with positron annihilation lifetime spectroscopy. The resonance closest to the free gas resonance is associated with very large free volume elements relative to those of traditional glassy polymers. In two‐dimensional experiments, there is a rapid exchange of xenon by diffusion between the two environments, indicating the close spatial proximity of the environments. Two‐dimensional experiments and one‐dimensional progressive saturation experiments reflect a rapid exchange of xenon between the sorbed state and the free gas resonance for the precipitated samples. At low temperatures, the high field peak exchanges more rapidly with the free gas. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1965–1974, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号