首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a simplified approach for the trace screening of toxic heavy metals utilizing bismuth oxide screen printed electrodes. The use of bismuth oxide instead of toxic mercury films facilitates the reliable sensing of lead(II), cadmium(II) and zinc(II). A linear range over 5 to 150 μg L?1 with detection limits of 2.5 and 5 μg L?1 are readily observed for cadmium and lead in 0.1 M HCl, respectively. Conducting a simultaneous multi‐elemental voltammetric detection of zinc, cadmium and lead in a higher pH medium (0.1 M sodium acetate solution) exhibited a linear range between 10 and 150 μg L?1 with detection limits of 5, 10 and 30 μg L?1 for cadmium, lead and zinc respectively. The sensor is greatly simplified over those recently reported such as bismuth nanoparticle modified electrodes and bismuth film coated screen printed electrodes. The scope of applications of this sensor with the inherent advances in electroanalysis coupled with the negliable toxicity of bismuth is extensive allowing high throughput electroanalysis.  相似文献   

2.
A multiwalled carbon nanotubes–sodium dodecyl benzene sulfonate (MWCNTs–NaDBS) modified stannum film electrode was employed for the determination of cadmium(II) and zinc(II). The Sn/MWCNTs‐NaDBS film electrode was prepared by applying MWCNTs–NaDBS suspension to the surface of the GCE, while the Sn film was plated in situ simultaneously with the target metal ions. Under optimal conditions, linear calibration curves were obtained in a range of 5.0 ?100.0 μg L?1 with detection limits of 0.9 μg L?1 for zinc(II) and 0.8 μg L?1 for cadmium(II), respectively. This film electrode was successfully applied to the determination of Zn(II) and Cd(II) in tap water sample.  相似文献   

3.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

4.
The application of protective overoxidized poly‐1‐naphtylamine membrane (ONAP) is demonstrated in combination with bismuth film microelectrode (ONAP‐BiFME) for anodic stripping voltammetric measurement of trace heavy metals in the presence of some selected surfactants. The ONAP membrane was electrochemically deposited on the surface of bare single carbon fiber microelectrode followed by the in situ or ex situ preparation of the bismuth film. The key operational parameters influencing the stripping performance of the ONAP‐BiFME were optimized and its electroanalytical performance was examined in the model solution containing Cd(II) and Pb(II) as test metal ions. The ONAP‐BiFME exhibited significantly enhanced stripping voltammetric response (approximately 70% for Cd(II) and 45% for Pb(II)) in comparison with unmodified BiFME in the absence of surfactants. In the presence of high concentrations, e.g., 20 mg L?1, of anionic or cationic surfactants, the stripping signal for, e.g., Cd(II) decreased for less than 6% at the ONAP‐BiFME, whereas at the unmodified BiFME the signal attenuated considerably (approximately 38%). Moreover, in the presence of 10 mg L?1 of nonionic surfactant Triton X‐100, the stripping signals at the bare BiFME were almost completely suppressed, whereas at the ONAP‐BiFME exhibited linear concentration behavior in the examined concentration range from 10 to 120 μg L?1, with the calculated limit of detection of 5.0 μg L?1 and 3.4 μg L?1 for Cd(II) and Pb(II), respectively in connection with 60 s accumulation time. The attractive behavior of ONAP‐modified BiFME expands the applicability of bismuth‐based electrodes for measurement of trace heavy metals in real environments, where the presence of more complex matrix can be expected.  相似文献   

5.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   

6.
An electrochemical sensor for the simultaneous determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry (SWASV) in bivalve mollusks using a glassy carbon electrode modified with electrochemically reduced graphene oxide has been developed. The modified surface was characterized by cyclic voltammetry, high resolution scanning electron microscopy (HR‐SEM), and Raman spectroscopy. The optimum conditions were optimized and a linear range was observed from 15–105 μg L?1 with a limits of detection of 15 μg L?1 for Cd(II) and Pb(II). The methodology was validated and applied in different samples of commercial bivalve mollusks with satisfactory results. The high conductivity and greater surface area of the modifying agent improves the preconcentration capacity of the electrochemical sensor, allowing to develop a simple, rapid and sensitive analysis in the detection of lead and cadmium in marine resources.  相似文献   

7.
A 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS)‐multiwalled carbon nanotubes (MWCNTs) nanocomposite/Bi film modified glassy carbon (GC) electrode was constructed for the differential pulse stripping voltammetric determination of trace Pb2+ and Cd2+. This electrode was more sensitive than ABTS‐free Bi/GC and Bi/MWCNTs/GC electrodes. Linear responses were obtained in the range from 0.5 to 35 μg L?1 for Cd2+ and 0.2 to 50 μg L?1 Pb(II), with detection limits of 0.2 μg L?1 for Cd2+ and 0.1 μg L?1 for Pb2+, respectively. This sensor was applied to the simultaneous detection of Cd2+ and Pb2+ in water samples with satisfactory recovery.  相似文献   

8.
A second‐derivative spectrophotometric method based on zero‐crossing over technique is developed in simultaneous determination of copper(II) and nickel(II) ions. Methylthymol blue (MTB) as a chromogenic reagent and cetyltrimethylammonium bromide as a surfactant were used, and measurements were carried out in buffered solution at pH 6 and at a temperature of 25 °C. The amplitude of derivative spectra was measured at wavelengths of 631.9 and 587.7 nm for the simultaneous determination of Ni2+ and Cu2+, respectively. Linearity was obtained in the range of 0.5–5.0 μg mL?1 for both ions in the presence of 0.0–5.0 μg mL?1 of the other ion as an interfering ion. IUPAC detection limits for Cu2+ and Ni2+ ions were obtained at 0.48 and 0.43 μg mL?1, respectively. The proposed procedure has been applied successfully for the simultaneous determination of copper and nickel in synthetic binary mixtures and real samples.  相似文献   

9.
A novel host reagent of β‐cyclodextrin‐2,4‐dihydroxyacetophenone‐phenylhydrazine(β‐CDP‐DHPH) was synthesized and characterized by IR and 1H NMR spectra. A highly selective and sensitive spectrofluorimetric determination of trace amounts of cadmium was proposed based on the reaction between Cd2+ and β‐CDP‐DHPH at pH 10.0. The molar ratio of β‐CDP‐DHPH to Cd2+ was 1:1. The linear range of this method was 0.56‐120 μg·L?;1 with a detection limit of 0.20 μg·L?;1. The interferences of 39 common ions in the determination of cadmium were investigated, and the results showed that the host reagent had a quite high selectivity. This method was rapid and simple in determination of trace amounts of cadmium in mineral, tap and river water.  相似文献   

10.
In the present paper novel column solid phase extraction procedure was developed for the determination of Cd(II) and Pb(II) in cows', goats', ewes', buffalos' and humans' milk samples using newly synthesized reagent 2,2′‐DPED3P (2,2′‐{[1,2‐diphenylethane‐1,2‐diylidene]dinitrilo}diphenol) for preconcentration and separation prior to differential pulse polarography using amberlite XAD‐2 in the ranges of pH 4.0–5.0. The sorbed elements were subsequently eluted with 10 mL of 2 M HCl elutes were analysed by differential pulse polarography (DPP). The interference of foreign ions has also been studied. Effects of various instrumental parameters are investigated and received conditions are optimized. The total metal concentration of the milk samples in the study area were in the following ranges 0.030–0.090 μg L?1 of Cd(II), 0.009–0.026 μg L?1 of Pb(II) respectively. The limits of detections were found to be 0.020 and 0.024 μg L?1 for Cd(II) and Pb(II) respectively by applying a preconcentration factor ~40. The proposed enrichment method was applied successfully for the determination of metal ions in cows', goats', ewes', buffalos' and humans' milk samples.  相似文献   

11.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

12.
The applicability of the subtractive anodic stripping voltammetry (SASV) using the square‐wave mode at the silver‐gold alloy electrode has been studied for thallium determination in the presence of large amount of lead and cadmium in natural samples. 10 mmol L?1 perchloric acid was found as the most suitable supporting electrolyte for determination in synthetic solutions. The thallium peak was separated about 200 mV from Cd+Pb peak. Diethylenetriaminepentaacetic acid addition was necessary to determine thallium at the silver‐gold alloy electrode in digested plant and sediment. The determination limit was equal to 1.4 μg L?1. The method was validated by the inter‐method comparison (ICP‐MS).  相似文献   

13.
This work reports the utility of an iridium microwire plated in situ with a bismuth film for the simultaneous determination of Pb(II) and Cd(II) by square‐wave anodic stripping voltammetry (SWASV). The experimental variables (concentration of the bismuth plating solution, preconcentration potential, accumulation time) were investigated. The limit of detection was 1 µg L?1 for Pb(II) and 1.5 µg L?1 for Cd(II) (at 300 s of preconcentration) and the % relative standard deviations were lower than 4.9 % and 5.5 %, respectively, at the 20 µg L?1 level (n=8). In addition, a study was made of coating the iridium‐based bismuth‐film microsensor with a film of Nafion for operation in the presence of surfactants. Finally, the electrode was applied to the determination of Pb(II) and Cd(II) in wastewater and tapwater samples.  相似文献   

14.
《Electroanalysis》2006,18(6):573-578
The electroanalytical detection of trace mercury(II) at gold ultra‐microelectrode arrays is reported. The arrays consist of 256 gold microelectrodes of 5 μm in diameter in cubic arrangements which are separated from their nearest neighbor by 100 μm. The array was utilized in nitric acid using linear sweep voltammetry where a linear response from mercury additions over the range 10 μg L?1?200 μg L?1 (10?8?10?6 M) was observed with a sensitivity and detection limit of 0.11 nC/μg L?1 and 3.2 μg L?1 (16 nM) respectively from using a deposition time of 30 s at ?0.2 V (vs. SCE). This methodology was explored in 0.1 and 1 M chloride media over the mercury range 10 μg L?1?200 μg L?1 (5×10?8?10?6 M) where similar sensitivities of 0.087 nC/μg L?1 and 0.078 nC/μg L?1 were observed with an identical detection limit. The protocol is demonstrated to be useful for the determination of mercury for analysis of environmental water samples.  相似文献   

15.
Simultaneous determination of hydrazine (HZ) and thiosemicarbazide (TSC) by partial least squares (PLS) and principle component regression (PCR) was carried out based on kinetic data of novel potentiometry. The rate of chloride ion production in reaction of HZ and TSC with N‐chlorosuccinimide (NCS) was monitored by a chloride ion‐selective electrode. The experimental dada shows not only the good ability of ion‐selective electrodes (ISEs) as detectors for the direct determination of chloride ions but also for simultaneous kinetic‐potentiometric analysis using chemometrics methods. The methods are based on the difference observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and TSC can be performed in their concentration ranges of 0.7‐20.0 and 0.5‐20.0 μg mL?1, respectively. The total relative standard error for applying PLS and PCR methods to 9 synthetic samples in the concentration ranges of 0.8‐10 μg mL?1 of TSC and 1.0‐12.0 μg mL?1 of HZ was 4.62 and 4.98, respectively. The effects of certain foreign ions upon the reaction rate were determined for the assessment of the selectivity of the method. Both methods (PLS and PCR) were validated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and TSC in water samples.  相似文献   

16.
A novel catalytic adsorptive stripping chronopotentiometric (CC‐CAdSCP) procedure for the determination of Co(II) traces was developed using a lead film electrode (PbFE). The PbFE was generated in situ on a glassy carbon support from a 0.1 M ammonia buffer containing 1×10?5 M Pb(II), 6.5×10?5 M DMG and the target metals. An addition of 0.2 M NaBrO3 to the solution yielded an 11‐fold catalytic enhancement of chronopotentiometric response of the Co(II)‐DMG complex. The CC‐CAdSCP curves were well‐developed, sharp and reproducible (RSD 5.0 % for 5×10?9 M Co(II)). The limit of detection for Co(II) for 210 s of accumulation time was 4×10?10 M (0.024 µg L?1). In addition, the elaborated method allowed the simultaneous quantification of Co(II) and Ni(II) simultaneously.  相似文献   

17.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

18.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

19.
This article the first reports on a fabrication and application of an electrochemical three electrode micro‐set containing: in situ plated lead film on carbon fiber working microelectrode, Ag/AgCl reference electrode and a platinum wire counter electrode placed in one casing for simultaneous Ni(II) and Co(II) traces determination by square wave adsorptive stripping voltammetry (SW AdSV). Ni(II) and Co(II) in forms of their complexes with nioxime were accumulated on the lead film plated on a carbon fibers microelectrode during standard procedure of measurement. Thanks to the fact that measurements were performed in micro‐vessel of a volume of 200 μl small amounts of reagents were used to prepare samples for measurements. In addition, because of the use of microelectrode, sample solutions were not mixed during accumulation step of measurements. This fact creates the possibility of conducting fields analysis. The experimental parameters (composition of the supporting electrolyte, potential and time of accumulation) and possible interference effects were investigated. The linear calibration graphs for Ni(II) and Co(II) were in the range from 2×10?9 to 1×10?7 mol L?1 and from 2×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The correctness of the proposed method was checked by determining Ni(II) and Co(II) in the certified reference material (SPS‐SW1) with satisfactory results.  相似文献   

20.
The performance of hydrogen‐ (HT) and oxygen‐terminated (OT) boron‐doped diamond (BDD) electrodes (electrochemically pretreated) on the simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim in pharmaceutical products is presented. Under the optimum analytical experimental conditions, the HT‐BDD electrode presented two well‐defined oxidation peaks at 920 and 1100 mV vs. Ag/AgCl for sulfamethoxazole and trimethoprim, respectively. On the other hand, when the OT‐BDD electrode was used, the sulfamethoxazole oxidation current peak was decreased twenty fold. The calculated LOD values for sulfamethoxazole and trimethoprim using the HT‐BDD electrode were 3.65 μg L?1 and 3.92 μg L?1, respectively. The results obtained in the simultaneous determination of sulfamethoxazole and trimethoprim in three different commercial formulations were similar to those obtained using a standard HPLC method at 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号