首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A novel cationic IrIII complex [Ir(Bpq)2(CzbpyCz)]PF6 (Bpq=2‐[4‐(dimesitylboryl)phenyl]quinoline, CzbpyCz = 5,5′‐bis(9‐hexyl‐9H‐carbazol‐3‐yl)‐2,2′‐bipyridine) containing both triarylboron and carbazole moieties was synthesized. The excited‐state properties of [Ir(Bpq)2(CzbpyCz)]PF6 were investigated through UV/Vis absorption and photoluminescence spectroscopy and molecular‐orbital calculations. This complex displayed highly efficient orange‐red phosphorescent emission with an emission peak of 583 nm and quantum efficiency of Φ=0.30 in dichloromethane at room temperature. The binding of fluoride ions to [Ir(Bpq)2(CzbpyCz)]PF6 can quench the phosphorescent emission from the IrIII complex and enhance the fluorescent emission from the N^N ligand, which corresponds to a visual change in the emission from orange‐red to blue. Thus, both colorimetric and ratiometric fluoride sensing can be realized. Interestingly, an unusual intense absorption band in the visible region was observed. And the detection of F? ions can also be carried out with visible light as the excitation wavelength. More importantly, the linear response of the probe absorbance change at λ=351 nm versus the concentration of F? ions allows efficient and accurate quantification of F? ions in the range 0–50 μM .  相似文献   

2.
A first step towards the microfabrication of a thin‐film array based on an organic/inorganic sensor hybrid has been realized. The inorganic microsensor part incorporates a sensor membrane based on a chalcogenide glass material (Cu‐Ag‐As‐Se) prepared by pulsed laser deposition technique (PLD) combined with an PVC organic membrane‐based organic microsensor part that includes an o‐xylyene bis(N,N‐diisobutyl‐dithiocarbamate) ionophore. Both types of materials have been electrochemically evaluated as sensing materials for copper(II) ions. The integrated hybrid sensor array based on these sensing materials provides a linear Nernstian response covering the range 1×10?6–1×10?1 mol L?1 of copper(II) ion concentration with a fast, reliable and reproducible response. The merit offered by the new type of thin‐film hybrid array includes the high selectivity feature of the organic membrane‐based thin‐film microsensor part in addition to the high stability of the inorganic thin‐film microsensor part. Moreover, the thin‐film sensor hybrid has been successfully applied in flow‐injection analysis (FIA) for the determination of copper(II) ions using a miniaturized home‐made flow‐through cell. Realization of the organic/inorganic thin‐film sensor hybrid array facilitates the development of a promising sophisticated electronic tongue for recognition and classification of various liquid media.  相似文献   

3.
4.
A novel Schiff base has been derived from condensing 4‐aminoantipyrine with diazotized salicylaldehyde. The derived compound acted as a colorimetric sensor for hazardous aqueous anions like CN?, F?, and CH3COO? among a list of anions. The colorimetric changes were further verified through absorption titrations. The detection limits were of the order of 10?10 M, which makes the sensor significant. The interaction of the anions with the sensor was stoichiometrically 1:1 with good binding constants. The sensor turns out to be a specific turn‐on emission sensor for CN? even in competitive environments. The F? ion sensing ability was extended to the determination of F? in a commercial toothpaste with good results.  相似文献   

5.
We report on a novel colorimetric and fluorometric chemosensor for fluoride ions based on 4‐(2‐acryloyloxyethylamino)‐7‐nitro‐2,1,3‐benzoxadiazole (NBDAE)‐labeled polymers. Upon gradual addition of fluoride ions (F), the green fluorescence emission of NBDAE moieties can be dramatically quenched, accompanied with the distinct colorimetric transition from green to yellow. NBDAE moieties are capable of selectively recognizing F ions via hydrogen‐bonding (H‐bonds) interactions at low F concentration and subjected to further deprotonation process at high F concentration. NBDAE‐labeled polymers in organic solvents possess high selectivity and fluorescence “turn‐off” characteristics toward the sensing of F ions with the detection limit down to ≈0.8 µM .

  相似文献   


6.
A new styryl‐type monomer, 2‐(4‐vinylbenzyloxy)‐1 ‐naphthaldehyde thiosemicarbazone (VNT), was synthesized and then copolymerized with methyl methacrylate (MMA) by reversible addition fragmentation chain transfer polymerization affording a series of poly(MMA‐co‐VNT)s with different functional unit content, predetermined molecular weight, and narrow molecular‐weight distribution. The desired copolymers were structurally confirmed by various spectroscopic characterizations. Colorimetric and fluorescent titration spectra revealed that the copolymers are highly selective toward fluoride anions over other competitive species including Cl?, Br?, I?, H2PO4?, AcO?, and HSO4?. On addition of F?, a remarkable colorless‐to‐yellow color change is easily observed by naked eyes. The influence of the copolymer composition and molecular weight on its sensing capacity was then carefully investigated. The results showed that higher VNT‐incorporation amount within the copolymer chains leads to higher sensitivity toward F? ions. Interestingly, the chromogenic process of the polymeric sensor can be switched back and forth by successively adding F? and HSO4? anions into the dimethyl sulfoxide solution of the polymer, which may be represented by a complementary “IMPLICATION/INHIBIT” logic gate at molecular level using both the ions as the chemical inputs. Based on such a reversible and reproducible sensing system, we designed a molecular‐scale sequential information processing circuit displaying “writing–reading–erasing–reading” behavior and “multiwrite” function in the form of binary logic. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Novel polyphenylacetylene ( P1 ) containing naphthalimides units in the side chain was designed and synthesized. The structure and properties of the polymer were characterized and evaluated by IR, NMR, UV, and PL. The measurements of sensing behavior to various halide anions, that is, F?, Cl?, Br?, and I?, reveal that the polymer is a ratiometric fluorescent chemosensors for fluoride ion. The polymer sensor shows spectral shifts and intensity changes in the presence of fluoride, in a wavelength‐ratiometric and ‐colorimetric manner, which can detect fluoride concentrations in range of 10–100 μM at visible wavelengths. The obvious colorless‐to‐yellow color change and blue‐to‐orange emission color change on the addition of fluoride ion are easily observed by naked eyes. It provides a feasible way to construct a ratiometric fluorescent chemosensors for fluoride ion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1544–1552, 2009  相似文献   

8.
A highly selective isophorone‐boronate ester based chemosensor, ( 1 ) , having a dicyanovinyl moiety as a convenient colorimetric probe, has been designed. Different types of anionic analyte such as CH3COO?, ClO4?, Cl?, F?, PF6?, Br? and HSO4? were tested and among them only highly nucleophilic F? anion displayed significant response towards the sensor. Addition of the fluoride anion across the boron atom disrupts the π‐conjugation thereby shifts the absorption wavelength towards the redshift region due to the decrease in the HOMO‐LUMO energy gap and a colour change from yellow to blue is observed under visible light condition. The detection limit of this probe was calculated to be 3.25 × 10—8 M for fluoride anion. The binding constants and the detection limits of the sensor were calculated using absorption titration studies. The silica gel TLC strips dip‐coated by the chemosensor ( 1 ) revealed a colour change from yellow to brick red to naked eye.  相似文献   

9.
《Electroanalysis》2017,29(6):1586-1595
In this work, we report the development of a highly sensitive capacitance chemical sensor based on a copper C,C,C,C‐ tetra‐carboxylic phthalocyanine‐acrylate polymer adduct (Cu(II)TCPc‐PAA) for phosphate ions detection. A capacitance silicon nitride substrate based Al−Cu/Si‐p/SiO2/Si3N4 structure was used as transducer. These materials have provided good stability of electrochemical measurements. The functionalized silicon‐based transducers with a Cu(II)Pc‐PAA membrane were characterized by using Mott‐Schottky technique measurements at different frequency ranges and for different phosphate concentrations. The morphological surface of the Cu(II)Pc‐PAA modified silicon‐nitride based transducer was characterized by contact angle measurements and atomic force microscopy. The pH effect was also investigated by the Mott‐Schottcky technique for different Tris‐HCl buffer solutions. The sensitivity of silicon nitride was studied at different pH of Tris‐HCl buffer solutions. This pH test has provided a sensitivity value of 51 mV/decade. The developed chemical sensor showed a good performance for phosphate ions detection within the range of 10−10 to 10−5 M with a Nernstian sensitivity of 27.7 mV/decade. The limit of detection of phosphate ions was determined at 1 nM. This chemical sensor was highly specific for phosphate ions when compared to other interfering ions as chloride, sulfate, carbonate and perchlorate. The present capacitive chemical sensor is thus very promising for sensitive and rapid detection of phosphate in environmental applications.  相似文献   

10.
《Electroanalysis》2006,18(11):1091-1096
N‐(2‐Pyridyl)‐N′‐(4‐methoxyphenyl)‐thiourea (PMPT) was found to be a suitable neutral ion carrier for the construction of a highly selective and sensitive La(III) membrane sensor. Poly(vinyl chloride) (PVC) based membranes of PMPT with potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) as an anionic excluder and oleic acid (OA), dibutyl phthalate (DBP), benzyl acetate (BA) and o‐nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators were constructed and investigated as La(III) membrane sensors. A membrane composed of PMPT‐PVC‐KTpClPB‐BA with the ratio 8.0 : 35.0 : 3.0 : 54.0 works well over a very wide concentration range (4.0×10?8 to 1.0×10?1 M) with a Nernstian slope of 19.6±0.2 mV per decade of activity between pH values of 4.0 and 9.0. The detection limit of the sensor was calculated to be 2.0×10?8 M (ca. 3.0 ppb). The sensor displays very good discrimination toward La(III) ions with regard to most common metal ions and lanthanide ions. The proposed sensor shows a short response time for whole concentration range (ca. 12 s). For evaluation of the analytical applicability of the La(III) sensor, it was successfully used as an indicator electrode for the titration of La(III) ions with EDTA. It was also applied to the determination of fluoride content of two mouth wash preparation samples and monitoring of La(III) ions in some binary and ternary mixtures.  相似文献   

11.
The Cu2+‐dependent ligation DNAzyme is implemented as a biocatalyst for the colorimetric or chemiluminescence detection of Cu2+ ions, Hg2+ ions, or cocaine. These sensing platforms are based on the structural tailoring of the sequence of the Cu2+‐dependent ligation DNAzyme for specific analytes. The tethering of a subunit of the hemin/G‐quadruplex DNAzyme to the ligation DNAzyme sequence, and the incorporation of an imidazole‐functionalized nucleic‐acid sequence, which acts as a co‐substrate for the ligation DNAzyme that is tethered to the complementary hemin/G‐quadruplex subunit. In the presence of different analytes, Cu2+ ions, Hg2+ ions, or cocaine, the pretailored Cu2+‐dependent ligation DNAzyme sequence stimulates the respective ligation process by combining the imidazole‐functionalized co‐substrate with the ligation DNAzyme sequence. These reactions lead to the self‐assembly of stable hemin/G‐quadruplex DNAzyme nanostructures that enable the colorimetric analysis of the substrate through the DNAzyme‐catalyzed oxidation of 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid), ABTS2?, by H2O2 into the colored product ABTS.?, or the chemiluminescence detection of the substrate through the DNAzyme‐catalyzed oxidation of luminol by H2O2. The detection limits for the sensing of Cu2+ ions, Hg2+ ions, and cocaine correspond to 1 nM , 10 nM and 2.5 μM , respectively. These different sensing platforms also reveal impressive selectivities.  相似文献   

12.
带有酚羟基的化合物1,2和3能够用作阴离子选择性生色传感器.它们对氟离子和醋酸根离子表现出明显的颜色变化,而对其它卤素离子没有响应.这种选择性可以用质子转移机理来解释.化合物1 含有两个酚羟基,在和过量的氟离子作用时,两个酚羟基表现为逐步去质子化.紫外光谱,核磁氢谱,核磁氟谱证明了这一点.  相似文献   

13.
A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2‐(2‐hydroxyphenyl)‐2,3‐dihydroquinolin‐4(1 H)‐one. This system allows selective “turn‐on” fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited‐state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD‐DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples.  相似文献   

14.
The mechanism of Stille reactions (cross‐coupling of ArX with Ar′SnnBu3) performed in the presence of fluoride ions is established. A triple role for fluoride ions is identified from kinetic data on the rate of the reactions of trans‐[ArPdBr(PPh3)2] (Ar=Ph, p‐(CN)C6H4) with Ar′SnBu3 (Ar′=2‐thiophenyl) in the presence of fluoride ions. Fluoride ions promote the rate‐determining transmetallation by formation of trans‐[ArPdF(PPh3)2], which reacts with Ar′SnBu3 (Ar′=Ph, 2‐thiophenyl) at room temperature, in contrast to trans‐[ArPdBr(PPh3)2], which is unreactive. However, the concentration ratio [F?]/[Ar′SnBu3] must not be too high, because of the formation of unreactive anionic stannate [Ar′Sn(F)Bu3]?. This rationalises the two kinetically antagonistic roles exerted by the fluoride ions that are observed experimentally, and is found to be in agreement with the kinetic law. In addition, fluoride ions promote reductive elimination from trans‐[ArPdAr′(PPh3)2] generated in the transmetallation step.  相似文献   

15.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

16.
A colorimetric and fluorescent fluoride probe bearing phenolic hydroxy and imine groups has been designed and synthesised. This receptor could visually and spectroscopically recognise F with high selectivity over other anions. After the addition of fluoride ions to the solution of ([1,1′-biphenyl]-4,4′-diylbis (azanylylidene)) bis (methanylylidene)) bis (naphthalen-2-ol) (TY), since the deprotonation reaction occurred between the sensor and fluoride, the fluorescence intensity of the solution changed significantly. Furthermore, the quenched fluorescence caused by fluoride ions could be recovered upon the addition of calcium ions to this complex solution. This resulted in an ‘OFF-ON-OFF’ type sensing. In particular, an IMP logic gate has been proposed using the output obtained from the fluorescence studies. The fluorescence, UV-vis titration and 1H NMR titration experiments indicated that the effects might occur via a combined process including hydrogen bond and deprotonation between the sensor and F.  相似文献   

17.
A dinitrophenyl hydrazone colorimetric anion sensor (receptor 1 ) was synthesized and its recognition properties towards various anions were investigated by naked eye observation and spectroscopic methods, namely UV‐vis and 1H NMR titrations in DMSO. The addition of AcO?, F? and H2PO4? to receptor 1 resulted in marked red shift of the charge‐transfer absorbance band (Δλ=91 nm, 407 nm to 498 nm) concomitant with a 'naked‐eye' detectable colour change from yellow to pink. However, both the colour and spectral changes were reversible by the addition of cations (MII) of 3d5‐10 as well as CdII, HgII, MgII and CaII. Subsequently, complementary IMP/INH logic functions based on colour and spectral switching (ON/OFF) were affirmed. The sensor can, thus be utilized as a colorimetric molecular switch modulated by F?/MII.  相似文献   

18.
The water‐stable 3D lanthanide‐organic framework (Ln‐MOF) {[Eu(bci)(H2O)] · 2H2O}n ( 1 ) [H2bci = bis(2‐carboxyethyl)isocyanurate] was synthesized under hydrothermal conditions. Compound 1 ‐ Eu exhibits a 3D open‐framework connected by Eu–(μ‐O)2–Eu chains and bci ligands. Meanwhile, 1 ‐ Eu exhibits highly efficient luminescent sensing for environmentally relevant Fe3+ and SCN ions through luminescence quenching. These results indicated that it could be utilized as a multi‐responsive luminescence sensor.  相似文献   

19.
A series of 2,5‐bis(dimesitylboryl)‐1,4‐bis(arylethynyl)benzenes 1 – 6 that contain various p‐substituents on the terminal benzene rings, including NPh2 ( 1 ), OMe ( 2 ), Me ( 3 ), H ( 4 ), CF3 ( 5 ), and CN ( 6 ) groups, were synthesized, and the effects of the p‐substituents on the absorption and fluorescence properties were investigated both in solution and in the solid state. Linear relationships were obtained not only between the Hammett σp+ constants of the p‐substituents and the absorption and fluorescence maxima, quantum yields, and excited‐state dynamics parameters in solution, but also between the σp+ constants and the fluorescence quantum yields in the solid state. An important finding extracted from these results is that the suppressed fluorescence quenching in the solid state is a common feature for the present laterally boryl‐substituted π‐conjugated skeletons. Hence, the diborylphenylene can serve as a useful core unit to develop highly emissive organic solids. In fact, most of the derivatives showed more intense emission in the solid state than in solution. In addition to these studies, the titration experiment of 1 by the addition of nBu4NF was conducted, which showed the stepwise bindings of two fluoride ions with high association constants as well as a drastic change in the fluorescence spectra, while constantly maintaining high quantum yields (0.61–0.76), irrespective of the binding modes. This result also demonstrated the potential utility of the present molecules as an efficient fluorescent fluoride ion sensor.  相似文献   

20.
A BiNPs@NPCGS nanocomposite was designed for highly efficient detection of multiple heavy‐metal ions by in situ synthesis of bismuth‐nanoparticle (BiNP)‐enriched nanoporous carbon (NPS) on graphene sheet (GS). The NPCGS was prepared by pyrolysis of zeolitic imidazolate framework‐8 (ZIF‐8) nanocrystals deposited on graphene oxide and displayed a high surface area of 1251 m2 g?1 and a pore size of 3.4 nm. BiNPs were deposited on NPCGS in situ by chemical reduction of Bi3+ with NaBH4. Due to the restrictive effect of the pore/surface structure of NPCGS, the BiNPs were uniform and well dispersed on the NPCGS. The BiNPs@NPCGS showed good conductivity and high effective area, and the presence of BiNPs allowed it to act as an efficient material for anodic‐stripping voltammetric detection of heavy‐metal ions. Under optimized conditions, the BiNPs@NPCGS‐based sensor could simultaneously determine Pb2+ and Cd2+ with detection limits of 3.2 and 4.1 nM , respectively. Moreover, the proposed sensor could also differentiate Tl+ from Pb2+ and Cd2+. Owing to its advantages of simple preparation, environmental friendliness, high surface area, and fast electron‐transfer ability, BiNPs@NPCGS showed promise for practical application in sensing heavy‐metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号