首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N-alkyl-C-polyfluoroalkyl-C-chlorosulfinimides RFC(Cl)SN R have been investigated. Some aspects of their thermal stability and their [3 + 2] and [3 + 1] cycloaddition reactions have been examined.  相似文献   

2.
SO3 adds across the CS double bond of H2C  SF4 with formation of 2-tetrafluoro-4-dioxo-1,2,4-oxadithietane, which rearranges to fluorsulfonylmethylidene sulfur difluoride oxide, F SO2 CH  SF2  O in the presence of CsF. © John Wiley & Sons, Inc.  相似文献   

3.
The existence of the orbital interaction presented in the literature as being the cause for the stabilisation of the Z,Z configuration of Ph-S-N=S=N-S-Ph (1) and its derivatives in the crystal phase, has been investigated. The results of theoretical calculations at the DFT/B3LYP/6-311+G* level of theory suggest that such a stabilising interaction might not exist or be extremely weak and that packing forces must be the main cause of the observed Z,Z configuration in the solid. To reach this conclusion structural and energetic parameters were combined to study the bonding in these -S-N=S=N-S- systems. For the analogous Ph-Se-N=S=N-Se-Ph (2) in particular the isomeric equilibrium in solution found in the variable-temperature 77Se NMR spectrum indicates that, in the gas phase or in solution, the observed Z,Z configuration is not stabilised to a greater extent than the Z,E configuration.  相似文献   

4.
M4X3[Si2O7]-Type Lanthanide Chalcogenide Disilicates (M ? Ce? Er; X ? S, Se) Attempts to produce single crystals of MSe2 (or MSe2?X) by vapour phase transport with iodine or the oxidation of MCl2 (or MClH) with sulfur in the presence of NaCl in sealed evacuated quartz containers often yielded well-grown single crystals with the composition M4X3[Si2O7] (M ? pr, Sm, Gd, X ? Se, and M ? Nd, Er, X ? S) as by-products. The crystal structures (tetragonal, 141/amd (no. 141)), Z = 8, contain two crystallographically independent M3+ Cations that are interconnected by chalcogenide (X2?) and disilicate anions ([Si2O7]6?). (M1)3+ is surrounded by eight (five X2? and three terminal O2? of the disilicate group), (M2)3+ by nine (three X2? and six terminal O2? of the [Si2O7]6? anion) chalcogenide anions. The disilicate anion itself exhibits the eclipsed conformation with non-linear Si? O? Si bridges (angles: 128 – 133°).  相似文献   

5.
A dimer of thioxo-N-t-butylimino(trimethylsiloxy)-phosphorane 5 has been prepared by reaction of tris(trimethylsilyl) phosphine with N-sulfinyl-N-tert-butylamine. The structure of 5 has been confimed by X-ray analysis data. 1-Aza-2-thia-3-phosphaallene 1 , thiaphosphaziridine 3 , iminophosphine P-sulfide 4 are postulated as intermediates of the reaction studied.  相似文献   

6.
Trimethylsilyltrifluoromethane sulfonate is shown to be an efficient catalyst for the elimination of Me3SiCl from N-trimethylsilyl-N-(2,4,6-tri-tert-butylphenyl)amidochlorophosphites la-f , leading to the phosphenimidous esters 3a–f. The crystal structures of phosphites 1a and 1d provide a stereochemical explanation for the better thermal stability of 1d On the basis of these observations a convenient and general synthesis of phosphenimidous esters 3a–f is presented.  相似文献   

7.
The detailed isomerization and dissociation reaction potential energy profile of the CH3PO2 system was established at the UCCSD(T)/6‐311++G(3df,2p)//UB3LYP/6‐311++G(d,p) level of theory. Seventy minimum isomers were located and connected by 93 optimized interconversion transition states. Furthermore, 32 isomers with high kinetic stability were predicted to be possible candidates for further experimental detection. The bonding nature of the suggested stable isomers was analyzed while their molecular properties including heats of formation, adiabatic ionization potentials, and adiabatic electronic affinities were calculated at the G2, G2(MP2), G3, and CBS‐Q levels. Based on the isomerization and dissociation potential energy surface, possible unimolecular decomposition mechanisms and pathways of the low‐lying molecules CH3P(?O)2, CH3O? P?O, and CH2?P(?O)OH were discussed. Furthermore, the transition state theory rate constants of the primary unimolecular dissociation channels were also calculated. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

8.
Electron impact mass spectra of several 5- and 6-membered P-heterocycles having a tertiary phosphine oxide or phosphinic ester function (5– 11 ) reveal the loss of the phosphorus-containing moiety formulated by P(O)Y + H−,+, Y (DOUBLE BOND) Ph, Bu, EtO. In the case of the P-phenyl hexahydrophosphinine oxide (9), the loss of the oxophosphine fragment is as intense as 100% on the relative scale. A 2,5-dihydro-1H-phosphole oxide having a sterically demanding aryl group on the phosphorus atom (12) undergoes thermal fragmentation at 250°C to result in the formation of oxophosphine 14 . © John Wiley & Sons, Inc.  相似文献   

9.
RHF(UHF)+MP2 and CASSCF calculations of potential energy surfaces' sections of cations X  OH (XC,N,O) and corresponding neutral particles are performed. It is shown that all cations should be relatively stable both with respect to X  O bond breaking and intramolecular rearrangements. Reactions of electron capture by these cations are also studied. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 580–588, 2000  相似文献   

10.
Sensitized photolysis : We describe a series of macrocyclic disulfides containing stiff stilbene (see scheme) as the intramolecular photosensitizer designed for fundamental mechanistic studies of sensitized photolysis of the S? S bond. Preliminary studies revealed weak temperature dependence of the quantum yields, which decreased exponentially with Boltzmann‐weighted average separation between the S? S bond and stiff stilbene.

  相似文献   


11.
The reaction of two‐coordinated (trimethylsilylamino)phosphines (Me3Si)2N PE SiMe3 1 (E = N) and 2 (E = CH) with hydroxycarbonyl compounds proceeded with four‐ or five‐member heterocyclization to yield derivatives of oxaphosphetane, oxaphospholanes, and oxaphospholes. The reaction rate depends on the structure of hydroxyketones as well as on the type of the two‐coordinated phosphorus compound in accordance with the polarity of the P=N and P=C bonds. Thus, reaction was completed in 30 min in the case of the ortho carbonyl phenoxy derivatives with the phosphine 1 , but required 2 h in the case of the alkyl hydroxy carbonyls. All reactions with the phosphine 2 took about 24 h. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:413–417, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20033  相似文献   

12.
The reactivity of disulfide and diselenide derivatives towards F? and CN? nucleophiles has been investigated by means of B3PW91/6‐311+G(2df,p) calculations. This theoretical survey shows that these processes, in contrast with the generally accepted view of disulfide and diselenide linkages, do not always lead to S? S or Se? Se bond cleavage. In fact, S? S or Se? Se bond fission is the most favorable process only when the substituents attached to the S or the Se atoms are not very electronegative. Highly electronegative substituents (X) strongly favor S? X bond fission. This significant difference in the observed reactivity patterns is directly related to the change in the nature of the LUMO orbital of the disulfide or diselenide derivative as the electronegativity of the substituents increases. For weakly electronegative substituents, the LUMO is a σ‐type S? S (or Se? Se) antibonding orbital, but as the electronegativity of the substituents increases the π‐type S? X antibonding orbital stabilizes and becomes the LUMO. The observed reactivity also changes with the nature of the nucleophile and with the S or Se atom that undergoes the nucleophilic attack in asymmetric disulfides and diselenides. The activation strain model provides interesting insights into these processes. There are significant similarities between the reactivity of disulfides and diselenides, although some dissimilarities are also observed, usually related to the different interaction energies between the fragments produced in the fragmentation process.  相似文献   

13.
The ability of bridging thiophenolate groups (RS?) to transmit magnetic exchange interactions between paramagnetic NiII ions is examined. Specific attention is paid to complexes with large Ni? SR? Ni angles. For this purpose, dinuclear [Ni2L1(μ‐OAc)?I2][I5] ( 2 ) and trinuclear [Ni3L2(OAc)2][BPh4]2 ( 3 ), where H2L1 and H2L2 represent 24‐membered macrocyclic amino‐thiophenol ligands, are prepared and fully characterized by IR‐ and UV/Vis spectroscopy, X‐ray crystallography, static magnetization M measurements and high‐field electron spin resonance (HF‐ESR). The dinuclear complex 2 has a central N3Ni2(μ‐S)2(μ‐OAc)Ni2N3 core with a mean Ni? S? Ni angle of 92°. The macrocycle L2 supports a trinuclear complex 3 , with distorted octahedral N2O2S2 and N2O3S coordination environments for one central and two terminal NiII ions, respectively. The Ni? S? Ni angles are at 132.8° and 133.5°. We find that the variation of the bond angles has a very strong impact on the magnetic properties of the Ni complexes. In the case of the Ni2‐complex, temperature T and magnetic field B dependencies of M reveal a ferromagnetic coupling J=?29 cm?1 between two NiII ions (H=JS1S2). HF‐ESR measurements yield a negative axial magnetic anisotropy (D<0) which implies a bistable (easy axis) magnetic ground state. In contrast, for the Ni3‐complex we find an appreciable antiferromagnetic coupling J′=97 cm?1 between the NiII ions and a positive axial magnetic anisotropy (D>0) which implies an easy plane situation.  相似文献   

14.
Room temperature reactions of S4N4 with (amino) diphenylphosphines, (R)Ph2P, have basically yielded two different types of S N heterocycles under two different stoichiometric conditions. Phosphiniminocyclotrithiatriazenes, (R)Ph2PN S3N3 (R = C4H8N , C5H10N , C6H12N , CH3NC4H8N , (C6H11)2 N , and (C6H5CH2)2N ) have been obtained (yield 45–76%) from a 1:2 mole ratio (S4N4:(R)Ph2P) reaction, while the disubstituted S4N4 derivatives, 1,5-[Ph2(R)PN]2S4N4 (R = C4N8N , C5H10N , and C6H12N ) have been obtained (yield 30–45%) only from a 1:3.5–4 mole ratio reaction. All the 1,5-[Ph2(R)PN]2S4N4 derivatives prepared in this study undergo a room temperature solution phase transformation to the corresponding (R)Ph2PN S3N3 heterocycles.  相似文献   

15.
Ab initio molecular orbital and DFT calculations have been carried out for three most stable dimers of parent nitrosamine (NA) in order to elucidate the structures and energetics of the dimers. The structures were optimized using HF, B3LYP, and MP2 methods with 6‐311+G(d,p) and 6‐311++G(2d,2p) basis sets. At the optimized geometries obtained at MP2/6‐311++G(2d,2p) level of theory, the energies were evaluated at QCISD/aug‐cc‐pVDZ and CCSD/aug‐cc‐pVDZ levels. The most stable dimer has two N? H···O?N hydrogen bonds and the least stable dimer has two N? H···N?O hydrogen bonds. The natural bond orbital analysis showed that the lpO(N) → BD*(N? N) and lpO(N) → BD*(N? Hb) interactions play a decisive role in the stabilization of the NH···O(N) hydrogen bonds in dimers. The atoms in molecules results reveal that the intermolecular N? H···O(N) H‐bonds in dimers have electrostatic character. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
Catalytic insertion or addition of a metal‐imido/nitrene species, generated from reaction of a transition‐metal catalyst with iminoiodanes, to C? H and C?C bonds offers a convenient and atom economical method for the synthesis of nitrogen‐containing compounds. Following this groundbreaking discovery during the second half of the last century, the field has received an immense amount of attention with a myriad of impressive metal‐mediated methods for the synthesis of amines and aziridines having been developed. This review will cover the significant progress made in improving the efficiency, versatility and stereocontrol of this important reaction. This will include the various iminoiodanes, their in situ formation, and metal catalysts that could be employed and new ligands, both chiral and non‐chiral, which have been designed, as well as the application of this functional group transformation to natural product synthesis and the preparation of bioactive compounds of current therapeutic interest. DOI 10.1002/tcr.201100018  相似文献   

17.
In this article, the binding energies of 16 antiparallel and parallel β‐sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for β‐sheet models. Further comparisons suggest that the binding energy of the β‐sheet models might come mainly from dipole–dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole–dipole attractive and repulsive interactions are further obtained in this article. The total of N? H···H? N and C?O···O?C dipole–dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel β‐sheet models is estimated to be about 6.0 kcal/mol. The individual N? H···O?C dipole–dipole attractive interaction is predicted to be ?6.2 ± 0.2 kcal/mol in the antiparallel β‐sheet models and ?5.2 ± 0.6 kcal/mol in the parallel β‐sheet models. The individual Cα? H···O?C attractive interaction is ?1.2 ± 0.2 kcal/mol in the antiparallel β‐sheet models and ?1.5 ± 0.2 kcal/mol in the parallel β‐sheet models. These values are important in understanding the interactions at protein–protein interfaces and developing a more accurate force field for peptides and proteins. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

18.
19.
A new unsymmetrical geminal dianion that contained both a phosphine oxide moiety and a phosphine sulfide moiety has been synthesized. Its reactivity towards RuII was explored, which led to the formation of a highly reactive carbene complex that evolved at room temperature to yield a kinetic orthometalated RuII complex through C? H activation of the phenyl group of the phosphine oxide moiety. This insertion was found to be thermally reversible and a second C? H insertion occurred at a phenyl group of the phosphine sulfide moiety to form the thermodynamic orthometalated RuII complex in a diastereospecific manner. DFT calculations fully rationalized the experimental findings in terms of the relative energies of the kinetic and thermodynamic products and allowed the mechanism of this process to be fully understood.  相似文献   

20.
A mononuclear nonheme cobalt(III) complex of a tetradentate ligand containing two deprotonated amide moieties, [Co(bpc)Cl2][Et4N] ( 1 ; H2bpc=4,5‐dichloro‐1,2‐bis(2‐pyridine‐2‐carboxamido)benzene), was prepared and then characterized by elemental analysis, IR, UV/Vis, and EPR spectroscopy, and X‐ray crystallography. This nonheme CoIII complex catalyzes olefin epoxidation upon treatment with meta‐chloroperbenzoic acid. It is proposed that complex 1 shows partitioning between the heterolytic and homolytic cleavage of an O? O bond to afford CoV?O ( 3 ) and CoIV?O ( 4 ) intermediates, proposed to be responsible for the stereospecific olefin epoxidation and radical‐type oxidations, respectively. Moreover, under extreme conditions, in which the concentration of an active substrate is very high, the Co? OOC(O)R ( 2 ) species is a possible reactive species for epoxidation. Furthermore, partitioning between heterolysis and homolysis of the O? O bond of the intermediate 2 might be very sensitive to the nature of the solvent, and the O? O bond of the Co? OOC(O)R species might proceed predominantly by heterolytic cleavage, even in the presence of small amounts of protic solvent, to produce a discrete CoV?O intermediate as the dominant reactive species. Evidence for these multiple active oxidants was derived from product analysis, the use of peroxyphenylacetic acid as the peracid, and EPR measurements. The results suggest that a less accessible CoV?O moiety can form in a system in which the supporting chelate ligand comprises a mixture of neutral and anionic nitrogen donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号