首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Aqueous iodination of trans-2-butenoic acid proceeds via hydrolysis of I2 to form HOI and I?, then rapid addition of HOI across the double bond to form the iodohydrin product. In the presence of iodate to keep iodide concentration low, the reaction proceeds at a conveniently measurable rate. The rate for the addition reaction is ?d[C4H6O2]/dt = 5900 [H+][C4H6O2][HOI]M/s at 25.0°C when [IO] = 0.025M and ionic strength = 0.3. The overall rate law in the presence of iodate is where [H+] and [IO] are total concentrations used to prepare the solution.  相似文献   

3.
One unit of S(IV) (SO2 or SHO3?) is oxidized per 2 units of [NiIII(cyclam)] species to obtain sulfate. Kinetic analyses have been done by varying the acidities (0.013 ? [H+] ? 1.0 M) and halide concentrations (0.000 ? [X?] ? 0.012 M; X=Cl and Br) at constant ionic strength (μ = 1.0 M). The rate law that incorporates the [X?] and [H+] dependence is ?d[NiIII]T/dt=2k[NiIII]T[S(IV)]T where 2k={ka[H+] + kbK + kKX[H+] [X?] + kKXK[X?]} {[H+] + K}?1 {1 + KX[X?]}?1, here ka=87 ± 7 M?1 s?1, kb=(2.5 ± 0.5)×103 M?1 s?1 and pK = 1.8 ± 0.2. Rate constants ka and kb are attributed to the reactions of [NiIII(cyclam) (H2O)2]3+ with SO2 and SHO3?, respectively. Monohalo species apparent equilibrium constants KCl=(1600 ± 400) M?1 and KBr=(190 ± 20) M?1 and rate constants k=80 ± 8 M?1 s?1 and k = 140 ± 15 M?1 s?1 are ascribed to the protonated pathway, involving the [NiIII(cyclam) (H2O)X]2+ and SO2(aq) reaction pairs. The other two rate constants of k=(5 ± 1)×103 M?1 s?1 and k=(3.1 ± 0.5)×104 M?1 s?1, refer to the deprotonated pathway and are assigned to the [NiIII(cyclam) (H2O)X]2+ /SHO3? redox couple. A deuterium H2O / D2O isotope effect of 2.1–2.8 can be attributed partially to an equilibrium isotope effect at low acidity though a small kinetic isotope (2.5 ± 0.5) effect is evident for the dihydrogen sulfito pathway, ka. The kinetic isotope effect and the absence of sulfite radical scavenging effects are explained by a mechanism entailing migration of a hydride from sulfur to the NiIII center to produce a NiIII—H species, which rapidly comproportionates, and S(VI). © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

5.
The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+$ step and k2 = 1.1 × 103 M?1 s?1 for the ${\rm FeSO}_4^+ + {\rm SO}_4^{2-} \stackrel{k_2}{\rightleftharpoons}\, {\rm Fe}({\rm SO}_4)_2^-$ step. The mono‐sulfate complex is also formed in the ${\rm Fe}({\rm OH})^{2+} + {\rm SO}_4^{2-} \stackrel{k_{1b}}{\longrightarrow} {\rm FeSO}_4^+$ reaction with the k1b = 2.7 × 105 M?1 s?1 rate constant. The most surprising result is, however, that the 2 FeSO? Fe3+ + Fe(SO4) equilibrium is established well before the system as a whole reaches its equilibrium state, and the main path of the formation of Fe(SO4) is the above fast (on the stopped flow scale) equilibrium process. The use and advantages of our recently elaborated programs for the evaluation of equilibrium and kinetic experiments are briefly outlined. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 114–124, 2008  相似文献   

6.
Gas‐phase reactions of ozone with two butenes (1‐butene and isobutene) and two methyl‐substituted butenes (2‐methyl‐1‐butene and 3‐methyl‐1‐butene) have been studied in an indoor chamber at 295–351 K. The O3 concentrations were monitored by Model 49C‐Ozone analyzer. The butene concentrations were measured by gas chromatography–flame ionization detector. The Arrhenius expressions of k=3.50×10?15e(?1756±84)/T cm3 molecule?1 s?1, k=3.39×10?15e(?1697±52)/T cm3 molecule?1 s?1, k=6.18×10?15e?(1822±80)/T cm3 molecule?1 s?1, and k=7.24×10?14e?(2741±139)/T cm3 molecule?1 s?1 were obtained for the ozonolysis reactions of 1‐butene, isobutene, 2‐methyl‐1‐butene, and 3‐methyl‐1‐butene, respectively. Both the reaction rate constant and activation energy obtained in this work are in good agreement with those reported by using different techniques in the literature. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 238–246, 2011  相似文献   

7.
The kinetics of the reaction of CH3O with NO and the branching ratio for HCHO product formation, obtained as ΓHCHO = (Rate of HCHO formation) / (Rate of CH3O decay), have been studied using a discharge flow reactor. Laser induced fluorescence has been used to monitor the decay of the CH3O radical and the build-up of the HCHO product. Overall rate constants and product branching ratios were measured at room temperature over the pressure range of 0.72–8.5 torr He. Three reaction mechanisms were considered which differed in the routes of HCHO formation: (i) direct disproportionation; (ii) via an energized collision complex; or (iii) both reaction routes. It has been shown that data on the pressure dependence of the overall rate constant are not sufficient to distinguish between these mechanisms. In addition, an accurate value of Γ is required. Analysis of the available experimental data provided 0.0 and about 0.1 as the lower and upper limit for Γ, respectively. Since the rate constants derived for CH3ONO formation were not sensitive to the value assumed for Γ, k = (1.69 ± 0.69) × 10?29 cm6 molecule?2 s?1 and k = (2.45 ± 0.31) × 10?11 cm3 molecule?1 s?1 could be derived. The rate constant obtained for formaldehyde formation when extrapolated to zero pressure is k = (3.15 ± 0.92) × 10?12 cm3 molecule?1 s?1. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The substituted thiourea, 4‐methyl‐3‐thiosemicarbazide, was oxidized by iodate in acidic medium. In high acid concentrations and in stoichiometric excess of iodate, the reaction displays an induction period followed by the formation of aqueous iodine. In stoichiometric excess of methylthiosemicarbazide and high acid concentration, the reaction shows a transient formation of aqueous iodine. The stoichiometry of the reaction is: 4IO + 3CH3NHC(S)NHNH2 + 3H2O → 4I + 3SO + 3CH3NHC(O)NHNH2 + 6H+ (A). Iodine formation is due to the Dushman reaction that produces iodine from iodide formed from the reduction of iodate: IO + 5I + 6H+ → 3I2(aq) + 3H2O (B). Transient iodine formation is due to the efficient acid catalysis of the Dushman reaction. The iodine produced in process B is consumed by the methylthiosemicarbazide substrate. The direct reaction of iodine and methylthiosemicarbazide was also studied. It has a stoichiometry of 4I2(aq) + CH3NHC(S)NHNH2 + 5H2O → 8I + SO + CH3NHC(O)NHNH2 + 10H+ (C). The reaction exhibits autoinhibition by iodide and acid. Inhibition by I is due to the formation of the triiodide species, I, and inhibition by acid is due to the protonation of the sulfur center that deactivates it to further electrophilic attack. In excess iodate conditions, the stoichiometry of the reaction is 8IO + 5CH3NHC(S)NHNH2 + H2O → 4I2 + 5SO + 5CH3NHC(O)NHNH2 + 2H+ (D) that is a linear combination of processes A and B. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 193–203, 2000  相似文献   

9.
The kinetics of the acqueous-phase reactions of the free radicals ·OH, ·Cl, and SO· with the halogenated acetates, CH2FCOO?, CHF2COO?, CF3COO?, and with CH2ClCOO?, CHCl2COO?, CCl3COO? were investigated. Generally, the reactivity decreases with increasing halogen substitution and is in the order k(·OH) > k(SO·) > k(·Cl), but there is no general relation between the effect on reactivity of chlorine and fluorine substitution. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The recent experiments on the chloride-assisted dealkylation of alkylcobalamins by a variety of oxidants (IrCl, AuCl, Fe(H2O)5Cl2+, and PtCl), which are scattered in several previous publications, and their general kinetic characteristics are summarized. The kinetic studies are also extended to include the dealkylations of (methylaquo)?3,5,6-trimethylbenzimidazolylcobamide and protonated base-off ethylcobalamin by IrCl (1.0M Cl?) and by Fe(III) ions at 0.1M Cl?, and the demethylation of (methylaquo)?3,5,6-trimethylbenzimidazolylcobamide by AuCl (1.0M Cl?). This extension is in an effort to substantiate the general mechanism which has been previously proposed for these oxidative dealkylations. The general kinetic characteristics are described in terms of a preassociation of the reactants, followed by a rate-determining electron-transfer process to yield the R-B radical, which then undergoes further reactions to produce the products observed. The overall reactions are discussed within the framework of chlorine-bridging inner sphere electron-transfer reactions.  相似文献   

11.
The mechanism of acid catalyzed decomposition of peroxodisulfate, (S2O) in aqueous perchlorate medium involves the hydrolysis of the species H2S2O8 and HS2O and the homolysis of the species H2S2O8, HS2O and S2O at the O? O bond. The overall rate law when 1.4M > [HClO4] > 0.1M is The constants k′ and k″ contain the hydrolysis and homolysis rate constants of HS2O8? and H2S2O8, respectively. With added Ag(I), the acid catalyzed and Ag(I) catalyzed reactions take place independently. Ag(I) catalyzed decomposition appears to involve the species AgS2O (aq).  相似文献   

12.
Experiments are described in which the kinetics of cathodic hydrogen evolution from the unhydrated H3O+ ion in pure CF3SO H3O+ are compared with those from an aqueous solution of CF3SO3H where the proton is mainly in a fully hydrated state as H9O. From the acid hydrate, which exists mainly as the ionic compound CF3SOH3O+, rates of H2 evolution at Ni, Pt, and Hg electrodes, measured at a given overpotential or expressed as exchange current densities, are between about 3.5 and 20 times slower than those from the same electrolyte in dilute (1.0M) aqueous solution. Allowing for the concentration differences in these two types of system and double-layer effects, the rate constants are between about 9.4 and 216 times smaller for the reaction from H3O+ than from H9O at the above electrodes. The evaluation of apparent heats of activation for H2 evolution from the two types of proton sources allows ratios of real frequency factors to be calculated for discharge from H3O+ and H9O. These data have a bearing on the theoretical conclusions regarding proton discharge mechanisms and show that frequency factor effects can be as important as activation energy differences in determining the rates of proton discharge from different proton sources. The results are discussed in terms of current ideas about electron and proton transfer in electrochemical reactions, the state of hydration of H+, and the role of discharge from paired CF3SO and H3O+ ions. In particular, the molecular mechanics of discharge of the proton from the molecular ion H3O+ can be different from that from the fully hydrated H+ ion where many more HO- vibrational and librational modes can be involved in the process of activation of the H9O entity.  相似文献   

13.
The extinction coefficients and the decay kinetics of I and (SCN) have been characterized over the 15–90°C-temperature range. The extinction coefficients of I at 385 and 725 nm were determined to be 10,000 and 2560M?1 cm?1, respectively, based on the extinction coefficient of (SCN) at 475 nm being equal to 7600M?1 cm?1. At these three wavelengths, all extinction coefficients were constant over the temperature range studied. The rate of decay of both I and (SCN) was found to be a function of I? and SCN? concentration, respectively, as well as temperature.  相似文献   

14.
Existing data on the self-reactions of tertiary peroxy radicals RO2 has been reanalyzed and corrected to deduce Arrhenius parameters for both termination and nontermination paths. For R = t-Butyl, these are logkt(M?1sec?1) = 7.1 - (7.0/θ) and logknt(M?1sec?1) = 9.4 - (9.0/θ), respectively, different from those recommended by other authors. The higher magnitudes observed for termination processes of tertiary peroxy radicals like those of cumyl and 1,1-diphenylethyl have been discussed in terms of a much greater cage recombination of cumyloxy radicals as contrasted with t-butoxy radicals. It is shown that for benzyl peroxy radicals, the R—O bond dissociation energy is sufficiently low (18–20 kcal) that reversible dissociation into R˙ + O2 opens a competing second-order path to fast recombination R˙ + RO → ROOR. This path is probably not important for cumyl peroxy radicals under usual experimental conditions but can become important for 1,1-diphenyl ethyl peroxy radicals at (O2) < 10?3M. At very low RO concentrations (<10?5M), in the absence of added O2, an apparent first-order disappearance of RO can occur reflecting the rate determining breaking of the cumyl—O bond followed by the second step above. The thermochemistry of RO is used to show that the reaction of R2O4 → 2RO + O2 must be concerted and cannot proceed via RO which is too unstable and cannot form even from RO˙ + O2.  相似文献   

15.
In the radiolysis of water vapor containing small concentrations of cyclohexane, the principal products which account for about 98% of all end products are found to be hydrogen, cyclohexene, and bicyclohexyl. Cyclohexene and bicyclohexyl yields were determined over a range of temperatures (70–200°C), total pressures (50–2400 torr), and total doses (0.15–2.0 Mrad). The disproportionation–combination ratio k/k for c-C6H11 radicals could be determined as 0.56 ± 0.01 from the ratio of cyclohexene to bicyclohexyl yield. By using c-C6D12, the ratio k/k for c-C6D11 radicals is found to be 0.38 ± 0.01. Comparison of the reactivity pattern of C6H11 and C6D11 radicals leads to (k)/(k)/(k/k) = 1.47 ± 0.02. The corresponding values for the reactions of c-C6H11 with c-C6D11 were also determined.  相似文献   

16.
Ultraviolet absorption spectra have been characterized for the acetyl-h3 and acetyl-d3 radicals, which were generated by the flash photolysis of the corresponding acetones. The spectra are broad and intense, with values of the extinction coefficient at the respective maxima estimated as: ?CH3CO(215) = (1.0 ± 0.1) × 104 L/mol·cm and ?CD3CO(207.5) = (1.0 ± 0.05) × 104 L/mol·cm. Rate constants for the reactions of mutual interaction were estimated as: k = 3.5 × 1010 L/mol·s and k = 3.4 × 1010 L/mol·s. Rate constants for the reactions of cross interaction were estimated as: k = 8.6 × 1010 L/mol·s and k = 5.2 × 1010 L/mol·s. The related values of the cross interaction ratios k/(kk)1/2 = 2.6 and k/(kk)1/2 = 1.6 do not differ significantly from the statistical value of 2. The participation of the radical displacement reactions was estimated in terms of the fractions k/k = 0.38 and k/k = 0.47. Corroborative spectra were obtained from the flash photolysis of methyl ethyl ketone and biacetyl, and the relative rates of the competing primary processes were estimated from the relative peak heights of the acetyl and methyl radicals in each system.  相似文献   

17.
A kinetic study of the reduction of pyrocatechol and catechin by dpph? radical has been carried out in various ratios of CH3OH/H2O mixed solvent at pH 5.5–7.5, μ = 0.10 M [(n‐Bu)4N]ClO4, and T = 25°C. The rate constants of oxidation in aqueous solvent, k, were obtained from the extrapolation of the linear plots of the specific rate constants k vs. % H2O plots at each pH value. A linear relationship between k and 1/[H+] was observed for both flavonoids with k = k1Ka1/[H+], where Ka1 was the first acid dissociation constant on the catechol ring and k1 is the rate constant of the oxidation of the mononegative species HX?. The values of k1 obtained from the slopes of the plots are (8.2 ± 0.2) × 105 and (6.1 ± 0.1) × 105 M?1 s?1 for pyrocatechol and catechin, respectively. The analysis of the reaction on the basis of Marcus theory for an outer‐sphere electron transfer reaction yielded a value of 3.7 × 103 M?1 s?1 for the self‐exchange rate constant of dpph?/dpphH couple. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 147–153, 2011  相似文献   

18.
The hexacyanoferrate(III)-thallium(I) reaction in aqueous acetic acid containing large concentrations of hydrochloric acid is considerably accelerated both by hydrogen and chloride ions as well as increasing acetic acid in the medium. The experimental results obey the rate law (1) where β1 to β6 are the cumulative stability constants of the species TlCl, TlCl, TlCl, HFe(CN), H2Fe(CN) and H3Fe(CN)6 respectively and ka and kb are the rate constants associated with the mono- and di-protonated oxidant species. The main active species are H2Fe(CN) and TlCl.  相似文献   

19.
The kinetics of the reversible recombination of the 2-phenyl- (I), 2-p-methoxyphenyl-(II), and 2-p-nitrophenyl-3-oxo-2,3-dihydrobenzothiophene-2-yl (III) radicals have been investigated. Recombination rate constants of R(I–III) have been determined in different solvents (2k1 ~ 109 M?1 s?1). The rate of reaction (I) with R(I–III) decreases with increasing solvent viscosity η. In the toluene-vaseline oil mixture (2 ? η ? 120 cP) the recombination of R(I–III) is molecular mobility limited. The thermodynamic parameters of reaction (I) have been determined: ΔH0 = 20–30 kcal/mol. Activation volumes ΔV for recombination of R(II) have been measured. In n-propanol ΔV is equal to the viscous flow activation volume of the solvent ΔV. In toluene and chloroform ΔV < ΔV. For the last two solvents the activation volumes of the cage reaction have been estimated ΔV = ?(2–3) cm3/mol. Visible-range absorption spectra and ESR spectra have been recorded for R(I–III). The role of cage effect in the reactivity anisotropy averaging of R(I–III) is discussed. The potential of the high-pressure tests for deriving information about the elementary act of a fast bimolecular reaction is considered.  相似文献   

20.
The title reaction, which is spin‐forbidden for N2(X1∑) + NO(X2Π) production, has been studied from 960 to 1130 K in a high‐temperature photochemistry reactor. No reaction could be observed, indicating k < 1 × 10?15 cm3 molecule?1 s?1. It is concluded that there is no significant contribution from the spin‐allowed exothermic path leading to N2(X1∑) + NO(a4Π). © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 387–389, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号