首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compounds, C13H15N3O5S and C11H10N2O4S2, respectively, both contain a phenyl­sulfonyl group connected, through a methyl­ene bridge, to either a substituted nitro­imidazole or nitro‐1,3‐thia­zole ring. In the imidazole‐containing mol­ecule, the nitro and sulfonyl groups are trans relative to the sulfonyl–methyl bond, while in the thia­zole‐containing mol­ecule, these substituents are cis. The stabilizing interactions within the crystals are also different between the two compounds.  相似文献   

2.
Twelve compounds unknown in the literature N‐(E)‐2‐stilbenyloxymethylenecarbonyl substituted hydrazones of 2‐, 3‐ and 4‐pyridinecarboxaldehydes, as well as methyl‐3‐pyridylketone have been prepared. The stereochemical behavior of these compounds in dimethyl‐d6 sulfoxide solution has been studied by 1H NMR technique. The E geometrical isomers and cis/trans amide conformers have been found for N‐substituted hydrazones 1–12. EI induced mass spectral fragmentation of these compounds were also investigated. The data obtained create the basis for distinguishing isomers.  相似文献   

3.
Low‐temperature studies of the simple variously substituted imidazole types 4‐phenyl‐1H‐imidazole, C9H8N2, 1‐benzyl‐1H‐imidazole, C10H10N2, and 1‐mesityl‐1H‐imidazole, C12H14N2, extend comparisons between parent imidazole species and their derivatives, the pronounced double‐bond localization opposite the substituted N atom common to simple neutral species being redistributed aromatically on protonation.  相似文献   

4.
Reactivity of 2‐(4‐hydroxyphenyl)‐1H‐imidazoline and 2‐(4‐hydroxyphenyl)‐1H‐imidazole toward substituted phenyl isocyanates was studied. When mentioned imidazoline was treated with 2.5 equiv of substituted phenyl isocyanate, three N,O‐dicarboxamides were prepared (substituents are H, 4‐NO2, and 4‐CH3). Subsequently, N,O‐diacetylated 2‐(4‐hydroxyphenyl)‐1H‐imidazoline was prepared and selective deprotection method was developed for preparation of 1‐acetyl‐2‐(4‐hydroxyphenyl)‐1H‐imidazoline using diethylamine in acetone. Six carbamates derived from this imidazoline were then prepared using 1.1 equiv of substituted phenyl isocyanates (substituents are H, 4‐CH3, 4‐OCH3, 4‐NO2, 4‐CN, and 3‐CF3). Finally, two carbamates were prepared from 2‐(4‐hydroxyphenyl)‐1H‐imidazole (substituents are 4‐NO2 and 4‐CN). No reactivity to imidazole ring was observed in this case. Eight derivatives were subjected to antimycobacterial screening. Concurrently, reactivity of 2‐(2‐aminophenyl)‐ and 2‐(2‐hydroxyphenyl)‐1H‐imidazole toward aliphatic and aromatic isocyanates was studied. Eight ureas were prepared using equivalent mixture of 2‐(2‐aminophenyl)‐1H‐imidazole and isocyanate (Et, Pr, isoPr, terc‐Bu, Cy, Ph, 4‐CH3C6H4, 4‐CNC6H4). Similar attempts to obtain related carbamates from 2‐(2‐hydroxyphenyl)‐1H‐imidazole lead only to three substituted phenyl carbamates (substituents are 4‐CH3, 4‐NO2, and 4‐CN). In both cases, no reactivity to imidazole ring was observed again.  相似文献   

5.
A series of novel 2‐substituted methlthio‐5‐(4‐amino‐2‐methylpyrimidin‐5‐yl‐)‐1,3,4‐thiadiazole derivatives were synthesized, characterized and evaluated for antiviral activities against tobacco mosaic virus (TMV). The preliminary biological results indicated that most compounds exhibit excellent antiviral activity against TMV in vivo. Among these compounds, compounds 9c , 9i , and 9p displayed the similar curative effect against TMV (EC50 = 287.05–322.47 µg/mL) to that of the commercial agent Ningnanmycin (EC50 = 301.83 µg/mL). In particular, compound 9d demonstrated the best curative effect against TMV (EC50 = 266.21 µg/mL), which was better than that of commercial Ningnanmycin.  相似文献   

6.
Potassium channel openers (KCO's) have been demonstrated to possess potent relaxant‐activity on smooth muscle. Tissue‐selective KCO's may find use in the treatment of a variety of diseases, such as hypertension, asthma, and urinary incontinence. We have previously reported a series of 1,9‐dioxa‐4‐aza‐phenanthrene‐6‐carbonitriles, including compounds 2 & 3 , as bladder‐selective KCO's. As a continuation of our efforts, we have designed 3‐[4‐acyl‐2‐(1‐methoxy‐1‐methylethyl)morpholin‐3‐yl]‐benzonitriles as ring‐opened analogs of compounds 2 & 3 . In this report, we describe the efficient construction of the novel 2,3‐disubstituted morpholine structure, as represented by the synthesis of compounds 4‐7 . Compounds 4‐7 showed potent and selective relaxant‐activity on rat bladder detrusor strip preparation. In this series, the most potent derivatives are Boc‐substituted analogs 4 & 6 (IC50 = 3.9 and 2.9 μM, respectively).  相似文献   

7.
Crystal structures are reported for three substituted 1H‐imidazole‐4,5‐dicarbonitrile compounds used as catalysts for the coupling reaction of nucleoside methyl phosphonamidites, namely 2‐(3′,5′‐dimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C19H14N4, (I), 2‐(2′,4′,6′‐trimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C20H16N4, (II), and 2‐[8‐(3,5‐dimethylphenyl)naphthalen‐1‐yl]‐1H‐imidazole‐4,5‐dicarbonitrile, C23H16N4, (III). The asymmetric unit of (I) contains two independent molecules with similar conformations. There is steric repulsion between the imidazole group and the terminal phenyl group in all three compounds, resulting in the nonplanarity of the molecules. The naphthalene group of (III) shows significant deviation from planarity. The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å. The molecules are connected into zigzag chains by intermolecular N—H...Nimidazole [for (I)] or N—H...·Ncyano [for (II) and (III)] hydrogen bonds.  相似文献   

8.
In 2‐methyl‐1,4,5‐tri­phenyl‐1H‐imidazole, C22H18N2, the three substituent phenyl groups are not delocalized with the imidazole moiety; the dihedral angles these phenyl groups form with the imidazole ring are in the range 25.90 (5)–63.49 (6)°.  相似文献   

9.
The structures of 2‐phenyl­malonpiperadide [systematic name: 2‐phenyl‐1,3‐bis­(piperidin‐1‐yl)­propane‐1,3‐dione, C19H26N2O2, (I)] and 2‐phenyl­malonmorpholide [systematic name: 1,3‐dimorpholino‐2‐phenyl­propane‐1,3‐dione, C17H22N2O4, (II)], have been determined and both their molecular conformations and packing arrangements compared. Although chemically similar, compounds (I) and (II) exhibit different molecular conformations. The only general conformational similarities are that their respective carbonyl groups are orientated in the same direction and the heterocyclic rings exist in the chair arrangement. General similarities in the packing arrangements arise due to both compounds having the same space group (P212121) and a similar alignment of their phenyl‐substituted backbone with respect to the c axis. Similar C—H⋯O hydrogen‐bonding associations are listed for the carbonyl O atoms, while only one of the morpholine O atoms is involved in any such association.  相似文献   

10.
In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α‐methylidene‐γ‐butyrolactones bearing 3,4‐dihydroquinolin‐2(1H)‐one moieties. O‐Alkylation of 3,4‐dihydro‐8‐hydroxyquinolin‐2(1H)‐one ( 1 ) with chloroacetone under basic conditions afforded 3,4‐dihydro‐8‐(2‐oxopropoxy)quinolin‐2(1H)‐one ( 2a ) and tricyclic 2,3,6,7‐tetrahydro‐3‐hydroxy‐3‐methyl‐5H‐pyrido[1,2,3‐de][1,4]benzoxazin‐5‐one ( 3a ) in a ratio of 1 : 2.84. Their Reformatsky‐type condensation with ethyl 2‐(bromomethyl)prop‐2‐enoate furnished 3,4‐dihydro‐8‐[(2,3,4,5‐tetrahydro‐2‐methyl‐4‐methylidene‐5‐oxofuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 4a ), which shows antiplatelet activity, in 70% yield. Its 2′‐Ph derivatives, and 6‐ and 7‐substituted analogs were also obtained from the corresponding 3,4‐dihydroquinolin‐2(1H)‐ones via alkylation and the Reformatsky‐type condensation. Of these compounds, 3,4‐dihydro‐7‐[(2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxo‐2‐phenylfuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 10b ) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC50 of 0.23 μM . For the inhibition of platelet‐activating factor (PAF) induced aggregation, 6‐{[2‐(4‐fluorophenyl)‐2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxofuran‐2‐yl]methoxy}‐3,4‐dihydroquinolin‐2(1H)‐one ( 9c ) was the most potent with an IC50 value of 1.83 μM .  相似文献   

11.
The attempted ethenylation at C(2) of 2‐unsubstituted 1H‐imidazole N‐oxides with ethyl acrylate (=prop‐2‐enoate) in the presence of Pd(OAc)2 does not occur. In contrast to the other aromatic N‐oxides, the [2+3] cycloaddition of imidazole N‐oxides predominates, and 3‐hydroxyacrylates, isomeric with the cycloadducts, are key products for the subsequent reaction. The final products were identified as dehydrated 2+1 adducts of 1H‐imidazole N‐oxide and ethyl acrylate. The role of the catalyst is limited to the dehydration of the intermediate 3‐hydroxypropanoates to give 1H‐imidazol‐2‐yl‐substituted acrylates.  相似文献   

12.
Starting from readily available p‐substituted‐benzylamines a series of ethyl 2‐alkylthio‐1‐substituted‐ben‐zylpyrrolo[2,3‐d]imidazole‐5‐carboxylates was prepared. In addition, starting from 2‐alkyl‐4(or 5)‐formylimidazoles and methyl 4′‐bromomethylbiphenyl‐2‐carboxylate a series of methyl substituted‐pyrrolo[2,3‐d]imidazole‐5‐carboxylates and methyl substituted‐pyrrolo[3,2‐d]imidazole‐5‐carboxylates was prepared.  相似文献   

13.
Novel 6‐substituted 2,10‐dichloro‐4,8‐dinitrodibenzo[d,g][1,3,6,2]dioxathiaphosphocin‐6‐oxides 4 were synthesized by reacting 5,5′‐dichloro‐3,3′‐dinitro‐2,2′‐dihydroxydiphenyl sulfide ( 2 ) with different aryl phosphorodichloridates, trichloromethylphosphonic dichloride and O‐2‐chloroethyl phosphoryldichloride (3) in the presence of triethylamine at 55–60°. Some of these compounds are prepared by reacting the monochloride, 2,6,10‐trichloro‐4,8‐dinitrodibenzo[d,g][1,3,6,2]dioxathiaphosphoein‐6‐oxide ( 5 ) in situ with substituted phenols and thiols. 5 is prepared by condensing 2 with phosphorus oxychloride. The 1H nmr chemical shifts of the dibenzodioxathiaphosphocin moiety indicates the presence of more than one conformer in solution. However the presence of more than one conformer in each example cannot be entirely eliminated. Interestingly 4d on oxidation to 12‐sulphone by H2O2 in acetic acid medium yielded only 12‐sulphoxide 6a . The ir, 1H, 13C, 31P nmr and mass spectral data are discussed. Some of these compounds were screened for antifungal activity against Curvularia lunata and Aspergillus niger and antibacterial activity on Bacillus subtilis and Klebsiella pneumoniae. A few of them possess significant activity.  相似文献   

14.
A new series of 3‐substituted‐thiazolyl‐2‐iminothiazolidin‐4‐ones were synthesized by nucleophilic substitution of p‐substituted‐thiazol‐2‐yl‐chloroacetamides with potassium thiocyanide by cyclization. The starting material p‐substituted‐thiazol‐2‐yl‐chloroacetamides were synthesized from p‐substituted‐thiazol‐2‐yl‐amines with chloroacetyl chloride, which in turn was prepared from one pot reaction of substituted aryl acetophenone and amino group of thiourea. The title compounds were investigated for their anticonvulsant activity. Among the tested compounds, compound 3‐(4‐(4‐fluorophenyl)thiazol‐2‐yl)‐2‐iminothiazolidin‐4‐one ( 16 ) emerged as the most active compound of the series, and it is moderately more potent than the reference standard diazepam.  相似文献   

15.
唐坚a  张蓓娜a  戈梅b  朱莉b  王洋a  陈瑛a  夏鹏a 《中国化学》2008,26(8):1447-1453
N-甲基-2-单芳基苯并噻唑啉 (1) 在固体状态时可以稳定地储藏在空气中。但是,它们在不同溶剂中却表现出了不同的行为。在醇溶液或二甲亚砜-水的体系中,1相对稳定;而在其它有机溶剂如:丙酮,氯仿,二氯甲烷和乙酸乙酯等溶剂中,会发生自发偶联反应生成相应的邻-(N-芳酰基-N-甲氨基苯)-二硫化合物 (2)。对这些新的化合物 (1) 和 (2) 进行了体外人乳腺癌细胞 (MDA-MB-231) 血管内皮生长因子靶点筛选,大部分化合物都表现出了抑制活性。实验结果表明这两类化合物 (1) 和 (2) 作为血管内皮生长因子抑制剂值得进行深入研究。  相似文献   

16.
The Bigenelli acid catalyzed condensation of 2‐trifluoromethylbenzaldehyde ( 1 ), urea ( 2 ) and an alkyl acetoacetate ( 3 ) afforded the respective alkyl (Me, Et, i‐Pr, i‐Bu) 6‐methyl‐4‐(2‐trifluoromethylphenyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylate ( 4‐7 ). Subsequent N3‐nitration of the alkyl esters ( 4‐7 ) using Cu(NO3)2 3H2O and Ac2O furnished the target alkyl 6‐methyl‐3‐nitro‐4‐(2‐trifluoromethylphenyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylates ( 8‐11 ). The N3‐nitro compounds ( 8‐11 ) were less potent calcium channel antagonists (IC50 values in the 1.9 × 10?7 to 3.9 × 10?6 M range) on guinea pig ileal longitudinal smooth muscle than the reference drug nifedipine (Adalat®, IC50 = 1.4 × 10?8 M). In vitro calcium channel modulation studies on guinea pig left atrium (GPLA) showed that the methyl and ethyl esters ( 8‐9 ) induced a weak‐to‐modest positive inotropic (agonist) effect, and that the inactive isopropyl ( 10 ) and isobutyl ( 11 ) esters did not alter the cardiac contractile force of GPLA.  相似文献   

17.
Three imidazole hydrazone compounds, namely 2‐(4‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[1‐(pyridin‐2‐yl)ethylidene]acetohydrazide, C12H12N6O3, ( 1 ), 2‐(2‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[1‐(pyridin‐2‐yl)ethylidene]acetohydrazide, C12H12N6O3, ( 2 ), and 2‐(2‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[(phenyl)(pyridin‐2‐yl)methylidene]acetohydrazide, C17H14N6O3, ( 3 ), were obtained and fully characterized, including their crystal structure determinations. While all the compounds proved not to be cytotoxic to J774.A1 macrophage cells, ( 1 ) and ( 3 ) exhibited activity against Leishmania chagasi, whereas ( 2 ) was revealed to be inactive. Since both ( 1 ) and ( 3 ) exhibited antileishmanial effects, while ( 2 ) was devoid of activity, the presence of the acetyl or benzoyl groups was possibly not a determining factor in the observed antiprotozoal activity. In contrast, since ( 1 ) and ( 3 ) are 4‐nitroimidazole derivatives and ( 2 ) is a 2‐nitroimidazole‐derived compound, the presence of the 4‐nitro group probably favours antileishmanial activity over the 2‐nitro group. The results suggested that further investigations on compounds ( 1 ) and ( 3 ) as bioreducible antileishmanial prodrug candidates are called for.  相似文献   

18.
A series of some substituted diethyl 4‐(2‐chloroquinolin‐3‐yl)‐2,6‐dimethylpyridine‐3,5‐dicarboxylates has been synthesized from substituted diethyl4‐(2‐chloroquinolin‐3‐yl)‐1,4‐dihydro‐2,6‐dimethylpyridine‐3,5‐dicarboxylates (1,4‐DHPs) by treating the latter with SiO2–HNO3 which proved to be a better oxidant in terms of product yield, reaction time, and cost. Further, these compounds were screened for their antimicrobial activity. All the diethyl 4‐(2‐chloroquinolin‐3‐yl)‐2,6‐dimethylpyridine‐3,5‐dicarboxylates exhibited more potent activities than the corresponding 1,4‐DHPs. Further, docking simulation of the most active and least active compounds 3e and 2e into Escherichia coli topoisomerase II DNA Gyrase B was also performed.  相似文献   

19.
A novel class of 3‐(4‐chlorophenyl)‐2‐(substituted)quinazolin‐4(3H)‐one derivatives were synthesized, and the structure of synthesized compounds was characterized by IR, 1H NMR, and mass spectroscopy. The newly synthesized compounds ( 4a–g and 6a–g ) were tested for their in vitro cyclooxygenase (COX) inhibition activity. The compounds have inhibitory profile against both COX‐1 and COX‐2, and some of the compounds are found to be selective against COX‐2. The compound 6g showed distinct inhibitory activity on COXs. The synthesized compounds were evaluated for their potential anti‐inflammatory activity as inhibitors of the proinflammatory cytokines IL‐6. Compounds 4d – g showed the highest level of inhibition among all the tested compounds. Thus, our data suggested that these compounds may represent a new class of potent anti‐inflammatory agents.  相似文献   

20.
A versatile synthetic method for preparing 4‐hydroxyquinolone and 2‐substituted quinolone compounds from simple benzoic acid derivatives was demonstrated. The synthetic strategies involve the use of well known ethyl acetoacetate synthesis, malonic ester synthesis and reductive cyclization. The key intermediates were keto esters 4a‐e , which could be transformed to 4‐hydroxyquinolones 5a,b or 2‐substituted quinolone ethyl esters 6a‐c depending on the reaction conditions. 4‐Hydroxyquinolone analogues were prepared and investigated for N‐methyl‐D‐aspartate (NMDA) activity in vitro. Among these derivatives, 6,7‐difluoro‐3‐nitro‐4‐hydroxyquinolin‐2(1H)‐one ( 9 ) exhibited moderate activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号