首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The platinum(II) mixed ligand complexes [PtCl(L1‐6)(dmso)] with six differently substituted thiourea derivatives HL, R2NC(S)NHC(O)R′ (R = Et, R′ = p‐O2N‐Ph: HL1; R = Ph, R′ = p‐O2N‐Ph: HL2; R = R′ = Ph: HL3; R = Et, R′ = o‐Cl‐Ph: HL4; R2N = EtOC(O)N(CH2CH2)2N, R′ = Ph: HL5) and Et2NC(S)N=CNH‐1‐Naph (HL6), as well as the bis(benzoylthioureato‐κO, κS)‐platinum(II) complexes [Pt(L1, 2)2] have been synthesized and characterized by elemental analysis, IR, FAB(+)‐MS, 1H‐NMR, 13C‐NMR, as well as X‐ray structure analysis ([PtCl(L1)(dmso)] and [PtCl(L3, 4)(dmso)]) and ESCA ([PtCl(L1, 2)(dmso)] and [Pt(L1, 2)2]). The mixed ligand complexes [PtCl(L)(dmso)] have a nearly square‐planar coordination at the platinum atoms. After deprotonation, the thiourea derivatives coordinate bidentately via O and S, DMSO bonds monodentately to the PtII atom via S atom in a cis arrangement with respect to the thiocarbonyl sulphur atom. The Pt—S‐bonds to the DMSO are significant shorter than those to the thiocarbonyl‐S atom. In comparison with the unsubstituted case, electron withdrawing substituents at the phenyl group of the benzoyl moiety of the thioureate (p‐NO2, o‐Cl) cause a significant elongation of the Pt—S(dmso)‐bond trans arranged to the benzoyl‐O—Pt‐bond. The ESCA data confirm the found coordination and bonding conditions. The Pt 4f7/2 electron binding energies of the complexes [PtCl(L1, 2)(dmso)] are higher than those of the bis(benzoylthioureato)‐complexes [Pt(L1, 2)2]. This may indicate a withdrawal of electron density from platinum(II) caused by the DMSO ligands.  相似文献   

2.
The substitution kinetics of the complexes [Pt(terpy)Cl]Cl·2H2O (PtL1), [Pt(tBu3terpy)Cl]ClO4 (PtL2), [Pt{4′-(2′′′-CH3-Ph)terpy}Cl]BF4 (PtL3), [Pt{4′-(2′′′-CF3-Ph)terpy}Cl]CF3SO3 (PtL4), [Pt{4′-(2′′′-CF3-Ph)-6-Ph-bipy}Cl] (PtL5) and [Pt{4′-(2′′′-CH3-Ph)-6-2′′-pyrazinyl-2,2′-bipy}Cl]CF3SO3 (PtL6) with the nucleophiles imidazole (Im), 1-methylimidazole (MIm), 1,2-dimethylimidazole (DIm), pyrazole (Pyz) and 1,2,4-triazole (Trz) were investigated in a methanolic solution of constant ionic strength. Substitution of the chloride ligand from the metal complexes by the nucleophiles was investigated as a function of nucleophile concentration and temperature under pseudo first-order conditions using UV/Visible and stopped-flow spectrophotometric techniques. The reactions follow the rate law k\textobs = k2 [ \textNu ] + k - 2 k_{\text{obs}} = k_{2} \left[ {\text{Nu}} \right] + k_{ - 2} . The results indicate that changing the nature or distance of influence of the substituents on the terpy moiety affects the π-back-donation ability of the chelate. This in turn controls the electrophilicity of the metal centre and hence its reactivity. Electron-donating groups decrease the reactivity of the metal centre, while electron-withdrawing groups increase the reactivity. Placing a strong σ-donor cis to the leaving group greatly decreases the reactivity of the complex, while the addition of a good π-acceptor group significantly enhances the reactivity. The results indicate that the metal is activated differently by changing the surrounding atoms even though they are part of a conjugated system. It is also evident that substituents in the cis position activate the metal centre differently to those in the trans position. The kinetic results are supported by DFT calculations, which show that the metal centre is less electrophilic when a strong σ-donor is cis to the leaving group and more electrophilic when a good π-acceptor group is part of the ring moiety. The temperature dependence studies support an associative mode of activation. An X-ray crystal structure of Pyz bound to PtL3 was obtained and confirmed the results of the DFT calculations as to the preferred N-atom as a binding site.  相似文献   

3.
7‐(o‐Substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy‐(o‐OMe, 2a ) and methyl‐ (o‐Me, 2b ) substituents or an electron‐withdrawing cyano‐ (o‐CN, 2c ) and trifluoromethyl‐ (o‐CF3, 2d ) substituents at the ortho‐position of the aromatic ring and 7‐(m‐substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methide with an electron‐withdrawing trifluoromethyl‐ (m‐CF3, 2e ) substituent at the meta‐position of the aromatic ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative optical activity were obtained for all of five monomers, and their specific rotation values largely changed depending upon the substituents of the monomers. On the basis of the comparison of various substituents effects, it was found that the specific rotation of obtained polymers is significantly affected by the electronic effects such as inductive and resonance effects rather than the steric and electrostatic effects of the substituent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1048–1058  相似文献   

4.
Several new N-allyl-N-(5-substituted)-2-furfuryl-p)-toluidines IIIa-e with Cl, Br, I, NO2 or CH3O groups in position 5 of the furan nucleus were prepared by allylation of the corresponding secondary furfurylaryl-amines. Both, electron withdrawing and releasing substituents enhanced the yield of intramolecular [4+2] cycloaddition.  相似文献   

5.
Two types of imidazoliophosphane with additional electron‐withdrawing substituents, such as alkoxy or imidazolio groups, are experimentally described and theoretically studied. Diethyl N,N′‐2,4,6‐methyl(phenyl)imidazoliophosphonite is shown to retain a P‐coordinating ability toward a {RhCl(cod)} (cod=cycloocta‐1,5‐diene) center, thus competing with the cleavage of the labile C? P bond. Derivatives of N,N′‐phenylene‐bridged diimidazolylphenylphosphane were isolated in good yield. Whereas the dicationic phosphane proved to be inert in the presence of [{RhCl(cod)}2], the monocationic counterpart was shown to retain the P‐coordinating ability toward a {RhCl(cod)} center, thus competing with the N‐coordinating ability of the nonmethylated imidazolyl substituent. The ethyl phosphinite version of the dication, thus possessing an extremely electron‐poor PIII center, was also characterized. According to the difference between the calculated homolytic and heterolytic dissociation energies, the N2C???P bond of imidazoliophosphanes with aryl, amino, or alkoxy substituents on the P atom is shown to be of dative nature. The P‐coordinating properties of imidazoliophosphanes with various combinations of phenyl or ethoxy substituents on the P atom and those of six diimidazolophosphane derivatives with zero, one, or two methylium substituents on the N atom, were analyzed by comparison of the corresponding HOMOs and LUMOs and by calculation of the IR C?O stretching frequencies of their [RhCl(CO)2] complexes. Comparison of the νCO values allows the family of the electron‐poor Im+PRR′ (Im=imidazolyl) potential ligands to be ranked in the following order versus (R,R′): P(OEt)3<(Ph,Ph)<(Ph,OEt)<(OEt,OEt)<PF3<(Ph,Im)<(Ph,Im+)<(OEt,Im+). The (Ph,Im) representative is therefore the least electron‐donating phosphane for which coordinating behavior toward a RhI center has been experimentally evidenced to date. Ultimate applications in catalysis could be envisaged.  相似文献   

6.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

7.
A series of N-[chloro(diorganyl)silyl]anilines RR′Si(NR″Ph)Cl (R, R′ = Me, Ph, CH2=CH, ClCH2, Cl(CH2)3; R″ = H, Me) was prepared via the reaction of diorganyldichlorosilanes with aniline or N-ethylaniline in the presence of triethylamine.  相似文献   

8.
The action of moisture on the homoleptic organoplatinum(II) compound [NBu4]2[Pt(CF3)4] ( 1 ) gives rise to the carbonyl derivative [NBu4][Pt(CF3)3(CO)] ( 2 ), which is itself moisture stable. However, treatment of compound 2 with HCl(aq) results in the formation of [NBu4][cis‐Pt(CF3)2Cl(CO)] ( 3 ), which undergoes degradation of an additional CF3 group by further treatment with HCl(aq) in large excess, affording [NBu4][cis‐Pt(CF3)Cl2(CO)] ( 4 ). The carbonyl derivatives 2 – 4 are fairly stable species, in which the CO ligand, however, can be readily extruded by reaction with trimethylamine N‐oxide (ONMe3). Thus, compound 2 reacts with ONMe3 in the presence of a number of neutral or anionic ligands affording a series of singly or doubly charged derivatives with the general formulae [NBu4][Pt(CF3)3(L)] [L=CNtBu ( 5 ), PPh3 ( 6 ), P(o‐tolyl)3 ( 7 ), tht ( 8 ; tht=tetrahydrothiophene)] and [NBu4]2[Pt(CF3)3X] [X=Cl ( 9 ), Br ( 10 ), I ( 11 )], respectively. Compound 2 also reacts with ONMe3 and pyridin‐2‐thiol (C5H5NS) giving rise to the five‐membered metallacyclic derivative [NBu4][Pt(CF3)2(CF2NC5H4S‐κCS)] ( 12 ), which can be viewed as a difluorocarbene species stabilized by intramolecular base coordination. On the other hand, treatment of compound 3 with ONMe3 in the presence of C5H5NS yields the four‐membered metallacyclic compound [NBu4][Pt(CF3)2(NC5H4S‐κNS)] ( 13 ). The geometries of the metallacycles in compounds 12 and 13 are compared. In the absence of any additional ligand, compound 3 undergoes dimerization producing the dinuclear species [NBu4]2[{Pt(CF3)2}2(μ‐Cl)2] ( 14 ). Halide abstraction in the latter compound with AgClO4 in THF yields the solvento compound cis‐[Pt(CF3)2(thf)2] ( 15 ). The highly labile character of the THF ligands in compound 15 makes this species a convenient synthon of the “cis‐Pt(CF3)2” unit.  相似文献   

9.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

10.
Amphiphilic five‐coordinate iron(III) complexes with {N2O2Cl} and {N2O3} coordination spheres are studied to elucidate the roles of electronic structure on the mechanisms for current rectification. The presence of an apical chlorido or phenolato ligand plays a crucial role, and the [FeIII{N2O2Cl}] species supports an asymmetric mechanism while its [FeIII{N2O3}] counterpart seems to allow for unimolecular mechanism. The effects of electron‐donating and electron‐withdrawing substituents in the ligand frameworks are also considered.  相似文献   

11.
The title compound, [PtCl2(C13H26NP)2], is a rare example of a sterically bulky ligand adopting a cis geometry in a square‐planar complex. It crystallizes on a twofold rotation axis which bisects the Pt centre and the P—Pt—P′ and Cl—Pt—Cl′ angles. The ligand exhibits a random packing disorder in the N,N‐dimethylpropylamine substituent, with the two orientations refining to occupancies of 0.404 (15) and 0.596 (15). Weak intermolecular interactions between a Cl and a H atom of the ligand of a neighbouring molecule result in extended chains along the a axis. The effective cone angle for the dimethyl[3‐(9‐phosphabicyclo[3.3.1]non‐9‐yl)propyl]amine (Phoban[3.3.1]‐C3NMe2) ligand was determined as being in the range 160–181°, depending on the choice of atoms used in the calculations.  相似文献   

12.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

13.
Preparations are described of several monometallic complexes (bipym)PtR2 [bipym = 2,2′-bipyrimidyl; R = Me, CF3, Ph, 1-adamantylmethyl (adme); R2 = (CH2)4] and bimetallic analogues R2Pt(μ-bipym)PtR′2 [R = R′ = CH3, C6H5, adme; R = CH3, R′ = Ph, adme, CF3]. IR, 1H NMR and UV/visible spectroscopic characteristics of the two modes of bipyrimidyl coordination are discussed.  相似文献   

14.
The polyfluorinated title compounds, [M Cl2(C16H16F4N2O2)] or [4,4′‐(HCF2CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 1 ), and M = Pt, ( 2 )], have –C(Hα)2OC(Hβ)2CF2H side chains with H‐atom donors at the α and β sites. The structures of ( 1 ) and ( 2 ) are isomorphous, with the nearly planar (bpy)M Cl2 molecules stacked in columns. Within one column, π‐dimer pairs alternate between a π‐dimer pair reinforced with C—H…Cl hydrogen bonds (α,α) and a π‐dimer pair reinforced with C—Hβ…F(—C) interactions (abbreviated as C—Hβ…F—C,C—Hβ…F—C). The compounds [4,4′‐(CF3CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 3 ), and M = Pt, ( 4 )] have been reported to be isomorphous [Lu et al. (2012). J. Fluorine Chem. 137 , 54–56], yet with disorder in the fluorous regions. The molecules of ( 3 ) [or ( 4 )] also form similar stacks, but with alternating π‐dimer pairs between the (α,β; α,β) and (β,β) forms. Through (C—)H…Cl hydrogen‐bond interactions, one molecule of ( 1 ) [or ( 2 )] is expanded into an aggregate of two inversion‐related π‐dimer pairs, one pair in the (α,α) form and the other pair in the (C—Hβ…F—C,C—Hβ…F—C) form, with the plane normals making an interplanar angle of 58.24 (3)°. Due to the demands of maintaining a high coordination number around the metal‐bound Cl atoms in molecule ( 1 ) [or ( 2 )], the ponytails of molecule ( 1 ) [or ( 2 )] bend outward; in contrast, the ponytails of molecule ( 3 ) [or ( 4 )] bend inward.  相似文献   

15.
The palladium‐iminophosphine complex [Pd(P‐N)(CH3)Cl] (P‐N = o‐diphenyl‐phosphino‐N‐benzaldimine) has been found to be a catalyst for dimerization and trimerization of ethylene. Some mechanistic insight concerning this oligomerization is discussed.  相似文献   

16.
A series of ten novel 2‐amino‐4‐oxo‐5‐[(substitutedbenzyl)thio]pyrrolo[2,3‐d]pyrimidines 2‐11 were synthesized as potential inhibitors of thymidylate synthase and as antitumor agents. The analogues contain various electron withdrawing and electron donating substituents on the benzylsulfanyl ring of the side chains and were synthesized from the key intermediate 2‐amino‐4‐oxo‐6‐methylpyrrolo[2,3‐d]pyrimidine, 14 . Appropriately substituted benzyl mercaptans were appended to the 5‐position of 14 via an oxidative addition reaction using iodine, ethanol and water. The compounds were evaluated against human, Escherichia coli and Toxoplasma gondii thymidylate synthase and against human, Escherichia coli and Toxoplasma gondii dihydrofolate reductase. The most potent inhibitor, ( 6 ) which has a 4′‐methoxy substituent on the side chain, has an IC50=25 μM against human thymidylate synthase. Contrary to analogues of general structure 1 , electron donating or electron withdrawing substituents on the side chain of 2‐11 had little or no influence on the human thymidylate synthase inhibitory activity.  相似文献   

17.
An ion‐neutral complex (INC)‐mediated hydride transfer reaction was observed in the fragmentation of protonated N‐benzylpiperidines and protonated N‐benzylpiperazines in electrospray ionization mass spectrometry. Upon protonation at the nitrogen atom, these compounds initially dissociated to an INC consisting of [RC6H4CH2]+ (R = substituent) and piperidine or piperazine. Although this INC was unstable, it did exist and was supported by both experiments and density functional theory (DFT) calculations. In the subsequent fragmentation, hydride transfer from the neutral partner to the cation species competed with the direct separation. The distribution of the two corresponding product ions was found to depend on the stabilization energy of this INC, and it was also approved by the study of substituent effects. For monosubstituted N‐benzylpiperidines, strong electron‐donating substituents favored the formation of [RC6H4CH2]+, whereas strong electron‐withdrawing substituents favored the competing hydride transfer reaction leading to a loss of toluene. The logarithmic values of the abundance ratios of the two ions were well correlated with the nature of the substituents, or rather, the stabilization energy of this INC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A facile three‐step synthesis of 2‐(2‐aminophenyl)pyrrole ( 1 ) and 2‐[(2‐aminomethyl)phenyl]pyrrole ( 2 ) is reported by use of Suzuki coupling of N‐Boc‐pyrrol‐2‐yl boronic acid ( 3 ) and o‐substituted aryl halogenides, followed by hydrogenation. The Pd‐catalyzed cross‐coupling reaction is optimized to be applicable to a wide range of substitued aryl halogenides, with electron‐donating and electron‐withdrawing substituents, 5a , 5b , 5c , 5d , 5e , 5f , 5g . Moreover, Pd‐catalyzed coupling of o‐bromoaniline and 3 could be applied for the one‐step preparation of pyrrolo[1,2‐c]quinazolin‐5(6H)‐one ( 8 ). J. Heterocyclic Chem., (2011).  相似文献   

19.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

20.
The platina‐β‐diketone [Pt2{(COMe)2H}2(µ‐Cl)2] ( 1 ) was found to react with monodentate phosphines to yield acetyl(chloro)platinum(II) complexes trans‐[Pt(COMe)Cl(PR3)2] (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PMePh2, 2c ; PMe2Ph, 2d ; P(n‐Bu)3, 2e ; P(o‐tol)3, 2f ; P(m‐tol)3, 2g ; P(p‐tol)3, 2h ). In the reaction with P(o‐tol)3 the methyl(carbonyl)platinum(II) complex [Pt(Me)Cl(CO){P(o‐tol)3}] ( 3a ) was found to be an intermediate. On the other hand, treating 1 with P(C6F5)3 led to the formation of [Pt(Me)Cl(CO){P(C6F5)3}] ( 3b ), even in excess of the phosphine. Phosphine ligands with a lower donor capability in complexes 2 and the arsine ligand in trans‐[Pt(COMe)Cl(AsPh3)2] ( 2i ) proved to be subject to substitution by stronger donating phosphine ligands, thus forming complexes trans‐[Pt(COMe)Cl(L)L′] (L/L′ = AsPh3/PPh3, 4a ; PPh3/P(n‐Bu)3, 4b ) and cis‐[Pt(COMe)Cl(dppe)] ( 4c ). Furthermore, in boiling benzene, complexes 2a – 2c and 2i underwent decarbonylation yielding quantitatively methyl(chloro)platinum(II) complexes trans‐[Pt(Me)Cl(L)2] (L = PPh3, 5a ; P(4‐FC6H4)3, 5b ; PMePh2, 5c ; AsPh3, 5d ). The identities of all complexes were confirmed by 1H, 13C and 31P NMR spectroscopy. Single‐crystal X‐ray diffraction analyses of 2a ·2CHCl3, 2f and 5b showed that the platinum atom is square‐planar coordinated by two phosphine ligands (PPh3, 2a ; P(o‐tol)3, 2f ; P(4F‐C6H4)3, 5b ) in mutual trans position as well as by an acetyl ligand ( 2a, 2f ) and a methyl ligand ( 5b ), respectively, trans to a chloro ligand. Single‐crystal X‐ray diffraction analysis of 3b exhibited a square‐planar platinum complex with the two π‐acceptor ligands CO and P(C6F5)3 in mutual cis position (configuration index: SP‐4‐3). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号