首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A spectroscopic study combining IR absorption and Raman scattering is presented for methylcyanodiacetylene (CH3C5N). Gas‐phase, cryogenic matrix‐isolated, and pure solid‐phase substance was analyzed. Out of 16 normal vibrational modes, 14 were directly observed. The analysis of the spectra was assisted by quantum chemical calculations of vibrational frequencies, IR absorption intensities, and Raman scattering activities at density functional theory and ab initio levels. Previous assignments of gas‐phase IR absorption bands were revisited and extended.  相似文献   

2.
We report on the characterization of dibenzo[cde,opq]rubicene (C30H14). The molecule was studied in solution at room temperature with absorption spectroscopy in the visible (vis) and ultraviolet (UV) wavelength ranges, and with emission spectroscopy. The infrared (IR), visible, ultraviolet, and vacuum ultraviolet (VUV) absorption spectra of a thin film were measured also at room temperature. In addition, the UV/vis absorption spectrum was measured at cryogenic temperatures using the matrix isolation spectroscopy technique. The interpretation of spectra was supported by theoretical calculations based on semiempirical and ab initio models, as well as on density functional theory. Finally, the results of the laboratory study were compared with interstellar spectra.  相似文献   

3.
We present the resonance‐enhanced multiphoton ionization, infrared‐ultraviolet hole burning (IR‐UV HB), and IR dip spectra of the trans‐acetanilide–methanol (AA–MeOH) cluster in the S0, S1, and cationic ground state (D0) in a supersonic jet. The IR‐UV HB spectra demonstrate the co‐existence of two isomers in S0,1, in which MeOH binds either to the NH or the CO site of the peptide linkage in AA, denoted as AA(NH)–MeOH and AA(CO)–MeOH. When AA(CO)–MeOH is selectively ionized, its IR spectrum in D0 is the same as that measured for AA+(NH)–MeOH. Thus, photoionization of AA(CO)–MeOH induces migration of MeOH from the CO to the NH site with 100% yield.  相似文献   

4.
The spin crossover compound [Fe(bt)2(NCS)2] has been studied by several density functionals and basis sets. In the calculation, optimized geometries of the compound in the low‐, intermediate‐, and high‐spin states, the vibrational modes and IR spectra, spin splittings energies, excited states, and UV/vis absorption spectra were obtained. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The gas‐phase molecular structure of (CH3)3CSNO was investigated by using electron diffraction, allowing the first experimental geometrical parameters for an S‐nitrosothiol species to be elucidated. Depending on the orientation of the ?SNO group, two conformers (anti and syn) are identified in the vapor of (CH3)3CSNO at room temperature, the syn conformer being less abundant. The conformational landscape is further scrutinized by using vibrational spectroscopy techniques, including gas‐phase and matrix‐isolation IR spectroscopy, resulting in a contribution of ca. 80:20 for the anti:syn abundance ratio, in good agreement with the computed value at the MP2(full)/cc‐pVTZ level of approximation. The UV/Vis and resonance Raman spectra also show the occurrence of the conformational equilibrium in the liquid phase, with a moderate post‐resonance Raman signature associated with the 350 nm electronic absorption.  相似文献   

6.
A detailed knowledge of the electronic structure and magnetic and optical properties of hemozoin, the malaria pigment, is essential for the design of effective antimalarial drugs and malarial diagnosis. By employing state‐of‐the‐art electronic structure calculations, we have performed an in‐depth investigation of the malaria pigment. Specifically, molecular bond lengths and spin states of the two FeIII heme centers and their exchange interaction, the UV/Vis absorption spectrum, and the IR vibrational spectra were calculated and compared with available experimental data. Our density functional theory (DFT)‐based calculations predict a singlet ground spin state that stems from an S=5/2 spin state on each of the Fe heme centers with a very weak antiferromagnetic exchange interaction between them. Our theoretical UV/Vis and IR spectra provide explanations for various spectroscopic studies of hemozoin and β‐hematin (a synthetic analogue of hemozoin). A good comparison of calculated and measured properties demonstrates the convincing unveiling of the electronic structure of the malaria pigment. Based on the predicted vibrational spectra, we propose a unique spectral band from the nuclear resonance vibrational spectroscopy (NRVS) results that could be used as a key fingerprint for malarial detection.  相似文献   

7.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   

8.
The UV absorption, phosphorescence and phosphorescence‐excitation spectra of benzophenone (BP) derivatives used as organic UV absorbers have been observed in rigid solutions at 77 K. The triplet–triplet absorption spectra have been observed in acetonitrile at room temperature. The BP derivatives studied are 2,2′,4,4′‐tetrahydroxybenzophenone (BP‐2), 2‐hydroxy‐4‐methoxybenzophenone (BP‐3), 2,2′‐dihydroxy‐4,4′‐dimethoxybenzophenone (BP‐6), 5‐chloro‐2‐hydroxybenzophenone (BP‐7) and 2‐hydroxy‐4‐n‐octyloxybenzophenone (BP‐12). The energy levels and lifetimes of the lowest excited triplet (T1) states of these BP derivatives were determined from the first peak of phosphorescence. The time‐resolved near‐IR emission spectrum of singlet oxygen generated by photosensitization with BP‐7 was observed in acetonitrile at room temperature. BP‐2, BP‐3, BP‐6 and BP‐12 show photoinduced phosphorescence enhancement in ethanol at 77 K. The possible mechanism of the observed phosphorescence enhancement is discussed. The T1 states of 2‐hydroxy‐5‐methylbenzophenone, 4‐methoxybenzophenone and 2,4′‐dimethoxybenzophenone have been studied for comparison.  相似文献   

9.
Vibrational (IR and Raman) spectra for the metal-free phthalocyanine (H2Pc) have been comparatively investigated through experimental and theoretical methods. The frequencies and intensities were calculated at density functional B3LYP level using the 6-3 IG(d) basis set. The calculated vibrational frequencies were scaled by the factor 0.9613 and compared with the experimental result. In the IR spectrum, the characteristic IR band at 1008.cm^-1 is interpreted as C-N (pyrrole) in-plane bending vibration, in contrast with the traditional assigned N-H in-plane or out-of-plane bending vibration. The band at 874 cm^-1 is attributed to the isoindole deformation and aza vibration. In the Raman spectrum, the bands at 540, 566, 1310, 1340, 1425, 1448 and 1618 cm^-1 are also re-interpreted. Assignments of vibrational bands in the IR and Raman spectra are given based on density functional calculations for the first time. The present work provides valuable information to the traditional empirical assignment and will be helpful for further investigation of the vibration spectra of phthalocyanine analogues and their metal complexes.  相似文献   

10.
Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO3.?.n H2O (n=1–8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second‐order Moller–Plesset perturbation (MP2) and coupled cluster theory using the 6‐311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO3.?.n H2O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time‐dependent density functional theory using the Becke three‐parameter nonlocal exchange and the Lee–Yang–Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO3.?.8 H2O cluster is in excellent agreement with the reported experimental spectrum for CO3.? (aq), obtained based on pulse radiolysis experiments.  相似文献   

11.
The chemisorption of 1,3,4‐oxadiazole‐2‐thiol (ODT) on gold nanorods has been investigated by using surface‐enhanced Raman spectroscopy (SERS) and density functional theory (DFT). Although most of the SERS spectra have remarkable similarity to the normal Raman spectra of the pure analyte, the adsorption of ODT on a gold surface leads to a drastic change in its Raman spectrum and distinct vibrational features are obtained with gold nanorods and spherical nanoparticles. Simulated Raman spectra for hybrid systems that consist of an oxadiazole moiety coordinated to a Au20 gold cluster provided valuable information about the coordination mode and enabled us to assign vibration modes.  相似文献   

12.
《中国化学会会志》2017,64(4):360-368
The ultraviolet (UV ) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO has been measured and compared with that of CH2OO . While the UV spectra of CH2OO and CD2OO are similar in the overall shape, distinctive oscillatory structures at the long wavelength side of the absorption band show clear effect of isotopic substitution. The average spacing between the vibrational peaks decreases from 606 cm−1 for CH2OO to 528 cm−1 for CD2OO . This large isotope effect cannot be explained by one‐dimensional model along the dissociative O−O bond. Instead, vibrational modes involving motions of the H‐atoms are expected to be responsible for the observed oscillatory structure. This isotope effect offers a stringent test for theoretical investigations on the absorption spectrum and excited‐state dynamics of the simplest Criegee intermediate.  相似文献   

13.
As a model system for intramolecular proton/hydrogen‐transfer coordinates, the structure of 2,5‐dihydroxybenzoic acid is investigated for the ground, first electronically excited and also the ionic state. Combined IR/UV spectroscopy in molecular‐beam experiments is applied and the experimental results are interpreted by the application of DFT and CASPT2 methods. No proton or hydrogen transfer is observed, but evidence is given for a hydrogen dislocation of the intramolecular hydrogen bond in the S1 state and to lesser extent in the D0 state. To obtain direct information on the proton/hydrogen‐transfer coordinate, IR spectra are recorded both in the region of the OH and especially the CO stretching vibrations by also applying two new variants of combined IR/UV spectroscopy for the S1 and D0 states. The CO groups are directly involved in the hydrogen bond and, in contrast to the hydrogen‐bonded OH groups, the CO stretching frequencies can be observed in all electronic states.  相似文献   

14.
The antimalarial agent mefloquine was investigated using Fourier transform near-infrared (FT NIR) Raman and FT IR spectroscopy. The IR and Raman spectra were calculated with the help of density functional theory (DFT) and a very good agreement with the experimental spectra was achieved. These DFT calculations were applied to unambiguously assign the prominent features in the experimental vibrational spectra. The calculation of the potential energy distribution (PED) and the atomic displacements provide further valuable insight into the molecular vibrations. The most prominent NIR Raman bands at 1,363 cm−1 and 1,434 cm−1 are due to C=C stretching (in the quinoline part of mefloquine) and CH2 wagging vibrations, while the most intense IR peaks at 1,314 cm−1; 1,147 cm−1; and 1,109 cm−1 mainly consist of ring breathings and δCH (quinoline); C–F stretchings; and asymmetric ring breathings, C–O stretching as well as CH2 twisting/rockings located at the piperidine moiety. Since the active agent (mefloquine) is usually present in very low concentrations within the biological samples, UV resonance Raman spectra of physiological solutions of mefloquine were recorded. By employing the detailed non-resonant mode assignment it was also possible to unambiguously identify the resonantly enhanced modes at 1,619 cm−1, 1,603 cm−1 and 1,586 cm−1 in the UV Raman spectra as high symmetric C=C stretching vibrations in the quinoline part of mefloquine. These spectroscopic results are important for the interpretation of upcoming in vitro and in vivo mefloquine target interaction experiments.  相似文献   

15.
The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine‐dimer radical‐anion clusters, I2.? ? n H2O (n=1–10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum‐energy structure by applying a Monte Carlo simulated annealing procedure including spin–orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I? I stretching band but enhances the intensity of the O? H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O? H bonds in a cyclic water network are observed for I2.? ? n H2O clusters with n≥3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite‐size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I2.? in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl2.? and Br2.?.  相似文献   

16.
By condensing 2‐aminobenzothiazole with 2‐hydroxy‐1‐naphthaldehyde, 2‐hydroxybenzaldehyde, 4‐methoxybenzaldehyde, 4‐hydroxybenzal‐dehyde, benzaldehyde and 4‐dimethylaminobenzaldehyde, and five Schiff bases Ia‐Ie are prepared. Also, two Schiff bases IIa and IIb are prepared by condensation of 2‐amino‐3‐hydroxypyridine with 2‐hydroxy‐1‐naphthaldehyde and 2‐hydroxybenzaldehyde. The 1H NMR, IR and UV/Vis spectra of these seven Schiff bases are investigated. The signals of the 1H NMR spectra as well as the important bands in the IR spectra are considered and discussed in relation to molecular structure. The UV/Vis absorption bands in ethanol are assigned to the corresponding electronic transitions and the electronic absorption spectra of Schiff bases Ib and IIb are studied in organic solvents of different polarities. The UV/Vis absorption spectra of 2‐amino‐3‐hydroxypyridine Schiff bases IIa and IIb are investigated in buffer solutions of different pH values containing 5% (v/v) methanol, and the results are utilized for the determination of pKa and ΔG* of the ionization of the phenolic OH‐groups. The fluorescence spectra of IIa and IIb are studied in organic solvents of different polarities. The obtained spectral results are confirmed by some molecular calculations using the atom super position and electron delocalization molecular orbital theory for the Schiff base IIb.  相似文献   

17.
《Chemphyschem》2003,4(8):838-842
The vibronic spectrum of the adenine–thymine (A–T) base pair was obtained by one‐color resonant two‐photon ionization (R2PI) spectroscopy in a free jet of thermally evaporated A and T under conditions favorable for formation of small clusters. The onset of the spectrum at 35 064 cm?1 exhibits a large red shift relative to the π–π* origin of 9H‐adenine at 36 105 cm?1. The IR–UV spectrum was assigned to cluster structures with HNH???O?C/N???HN hydrogen bonding by comparison with the IR spectra of A and T monomers and with ab initio calculated vibrational spectra of the most stable A–T isomers. The Watson–Crick A–T base pair is not the most stable base‐pair structure at different levels of ab initio theory, and its vibrational spectrum is not in agreement with the observed experimental spectrum. Experiments with methylated A and T were performed to further support the structural assignment.  相似文献   

18.
The dependence of the preferred microhydration sites of 4‐aminobenzonitrile (4ABN) on electronic excitation and ionization is determined through IR spectroscopy of its clusters with water (W) in a supersonic expansion and through quantum chemical calculations. IR spectra of neutral 4ABN and two isomers of its hydrogen‐bonded (H‐bonded) 4ABN–W complexes are obtained in the ground and first excited singlet states (S0, S1) through IR depletion spectroscopy associated with resonance‐enhanced multiphoton ionization. Spectral analysis reveals that electronic excitation does not change the H‐bonding motif of each isomer, that is, H2O binding either to the CN or the NH site of 4ABN, denoted as 4ABN–W(CN) and 4ABN–W(NH), respectively. The IR spectra of 4ABN+–W in the doublet cation ground electronic state (D0) are measured by generating them either in an electron ionization source (EI‐IR) or through resonant multiphoton ionization (REMPI‐IR). The EI‐IR spectrum shows only transitions of the most stable isomer of the cation, which is assigned to 4ABN+–W(NH). The REMPI‐IR spectrum obtained through isomer‐selective resonant photoionization of 4ABN–W(NH) is essentially the same as the EI‐IR spectrum. The REMPI‐IR spectrum obtained by ionizing 4ABN–W(CN) is also similar to that of the 4ABN+–W(NH) isomer, but differs from that calculated for 4ABN+–W(CN), indicating that the H2O ligand migrates from the CN to the NH site upon ionization with a yield of 100 %. The mechanism of this CN→NH site‐switching reaction is discussed in the light of the calculated potential energy surface and the role of intracluster vibrational energy redistribution.  相似文献   

19.
The direct oxidation of benzene to phenol with H2O2 as the oxidizer, which is regarded as an environmentally friendly process, can be efficiently catalyzed by carbon catalysts. However, the detailed roles of carbon catalysts, especially what is the active site, are still a topic of debate controversy. Herein, we present a fundamental consideration of possible mechanisms for this oxidation reaction by using small molecular model catalysts, Raman spectra, static secondary ion mass spectroscopy (SIMS), DFT calculations, quasi in situ ATR‐IR and UV spectra. Our study indicates that the defects, being favorable for the formation of active oxygen species, are the active sites for this oxidation reaction. Furthermore, one type of active defect, namely the armchair configuration defect was successfully identified.  相似文献   

20.
Large protonated polycyclic aromatic hydrocarbons (H+PAHs) are possible carriers of unidentified infrared (UIR) emission bands from interstellar objects, but the characterization of infrared (IR) spectra of large H+PAHs in the laboratory is challenging. IR absorption spectra of protonated coronene (1‐C24H13+) and mono‐hydrogenated coronene (1‐C24H13.), which were produced upon electron bombardment of parahydrogen containing a small proportion of coronene (C24H12) during matrix deposition, were recorded. The spectra are of a much higher resolution than those obtained by IR multiphoton dissociation by Dopfer and co‐workers. The IR spectra of protonated pyrene and coronene collectively appear to have the required chromophores for features of the UIR bands, and the spectral shifts on an increase in the number of benzenoid rings point in the correct direction towards the positions of the UIR bands. Larger protonated peri‐condensed PAHs might thus be key species among the carriers of UIR bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号