首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fayum mummy portraits, painted around 2000 years ago, represent a fascinating fusion of Egyptian and Graeco-Roman funerary and artistic traditions. Examination of these artworks may provide insight into the Roman Empire’s trade and economic and social structure during one of its most crucial yet still hazy times of transition. The lack of proper archaeological documentation of the numerous excavated portraits currently prevents their chronological dating, be it absolute or relative. So far, their production period has been defined essentially on the basis of the relevant differences in their pictorial style. Our study introduces the use of Accelerator Mass Spectrometry (AMS) to assess the age of a fragment of an encaustic painting belonging to the corpus of the Fayum portraits. The unexpected age resulting from 14C analysis suggests the need to reconsider previous assumptions regarding the period of production of the Fayum corpus. Furthermore, our multi-analytical, non-invasive approach yields further details regarding the fragment’s pictorial technique and constituting materials, based on spectral and morphological analysis and cross-sectional examination.  相似文献   

2.
Summary Accelerator mass spectrometry (AMS) is the most sensitive, safe and precise analytical method for quantifying long-lived isotope in biomedical research with animals as well as human beings. In Korea, AMS Laboratory has been operating successfully for years measuring especially archeological samples for 14C dating. In this year, a biological sample pretreatment facility was setup and we have also started to work on biomedical applications. As a preliminary study, we have measured the natural background levels of 14C in tissues and blood of humans and rats. The results were agreed with the other reported levels and gave stable and reproducible results within 1-2%.  相似文献   

3.
In this paper, the effects of temperature from 60 °C to 80 °C and the molar ratios in monomer feed on the copolymerization of α-methylstyrene(AMS) and styrene(St) were studied. The resulting copolymers, designated as PAS, were characterized by FTIR, GPC, NMR and TGA. When the reaction temperature was below 75 °C, the molecular weights increased almost linearly as the evolution of the copolymerization. The phenomenon revealed that AMS could mediate the conventional free radical polymerization having some features of a controlled system. As the AMS/St = 50/50(molar) in feed, the overall fraction of the AMS unit incorporated into the copolymer was as high as 42 mol%, the monomer conversion could be more than 90 wt% and the molecular weights could reach as high as 4400. However, since the styrene is more reactive than AMS, the AMS fraction in copolymer increased with the overall monomer conversion. The 13C-NMR revealed the products were random copolymers which had triads, such as-AMS-AMS-AMS-,-St-AMS-AMS-(-AMS-AMS-St-) and-St-AMS-St-. TGA curves demonstrated that the degradation temperature of the resulting copolymers went down from about 356.9 °C(0 mol% AMS) to 250.2 °C(42 mol% AMS). This behavior demonstrated that there exist weak bonds in the AMScontaining sequences which could be used as potential free radical generators.  相似文献   

4.
Mount Arafat is a sacred place for Muslims. It has been classified as a granodiorite rock which mainly consists of feldspar and quartz, muscovite, etc. During the Hajj and Umra, Muslims visit this holly place and stay there for some time. In order to study the geology and thermal history as well as to assess the radiological hazards due to the presence of primordial radionuclides, systematic studies using petrographic, fission track dating and γ-spectrometric (HPGe) techniques were carried out. Our study yielded fission track age of 9.13 ± 1.05 Ma of the Mount Arafat granodiorite. Rifting, magmatism, volcanism and sea floor spreading that resulted in the formation of Red Sea seems may have altered the original age of the Arafat granodiorite under study to 9.13 ± 1.05 Ma. Measured radioactivity concentrations due to 226Ra, 232Th and 40K were found to be 10.75 ± 3.92, 29.21 ± 4.34 and 664.49 ± 7.45 Bq kg?1, respectively. From the measured radioactivity, gamma index (Iγ) and radium equivalent (Raeq) were calculated as 0.402 and 103.23 Bq kg?1 whereas outdoor external dose (Dout) and annual effective dose (Eout) were estimated to be 40.30 nGyh?1 and 0.045 mSvy?1 respectively. All the above mentioned values are well below the recommended limits. The Mount Arafat thus does not pose any radiological health hazard to the general public.  相似文献   

5.
Summary The advantages that accelerator mass spectrometry (AMS) provide for radiocarbon analysis, notably smaller sample sizes and shorter measurement times, also apply to the analysis of 129I. In this paper, the requirements for a mass spectrometry system for measuring extremely low concentrations of rare atoms are discussed and these requirements are illustrated using the details of the AMS analysis of 129I. As an example of an application of this AMS technology, a series of 129I measurements, used to identify isolated events in which radioactivity has been atmospherically transported into the Arctic, is described. Such investigations could not be carried out without the small sample size capability of AMS analysis.  相似文献   

6.

Rationale

For radiocarbon results to be accurate, samples must be free of contaminating carbon. Sample pre‐treatment using a high‐performance liquid chromatography (HPLC) approach has been developed at the Oxford Radiocarbon Accelerator Unit (ORAU) as an alternative to conventional methods for dating heavily contaminated bones. This approach isolates hydroxyproline from bone collagen, enabling a purified bone‐specific fraction to then be radiocarbon dated by accelerator mass spectrometry (AMS).

Methods

Using semi‐preparative chromatography and non‐carbon‐based eluents, this technique enables the separation of underivatised amino acids liberated by hydrolysis of extracted bone collagen. A particular focus has been the isolation of hydroxyproline for single‐compound AMS dating since this amino acid is one of the main contributors to the total amount of carbon in mammalian collagen. Our previous approach, involving a carbon‐free aqueous mobile phase, required a two‐step separation using two different chromatographic columns.

Results

This paper reports significant improvements that have been recently made to the method to enable faster semi‐preparative separation of hydroxyproline from bone collagen, making the method more suitable for routine radiocarbon dating of contaminated and/or poorly preserved bone samples by AMS. All steps of the procedure, from the collagen extraction to the correction of the AMS data, are described.

Conclusions

The modifications to the hardware and to the method itself have reduced significantly the time required for the preparation of each sample. This makes it easier for other radiocarbon facilities to implement and use this approach as a routine method for preparing contaminated bone samples.
  相似文献   

7.
Loess sediment was prepared and characterized with well-established K, Th and U contents, and corresponding 40K, 232Th and 235,238U activities, intended for use as a reference material in the annual radiation dose determination for luminescence dating. To this purpose, loess was collected in Volkegem, Belgium, and — after drying, pulverizing and homogenizing — characterized via k 0-INAA and HPGe gamma-ray spectrometry. This led to 12 kg material with a grain size below 50 μm, with established K, Th and U homogeneity, with the 232Th and 238U decay series proven to be in equilibrium, and with the following K, Th and U reference data: K = 16.5±1.5 g·kg−1 (40K = 497±45 Bq·kg−1); Th = 10.4±0.6 mg·kg−1 (232Th = 42.2±2.5 Bq·kg−1); U = 2.79±0.12 mg·kg−1 (238U = 34.5±1.5 Bq·kg−1; 235U = 1.59±0.09 Bq·kg−1; 235+238U = 36.1±1.7 Bq·kg−1). These data were confirmed via comparison with the results from NaI(Tl) field gamma-ray spectrometry, thick-source ZnS alpha-counting and thick-source GM beta-counting (after converting all data to Gy·ka−1). The reference material is available (as aliquots up to 200 g) from the Ghent Luminescence Laboratory to all interested luminescence dating laboratories upon motivated request.  相似文献   

8.
A set of fossil bones from Romania has been analysed by accelerator mass spectrometry and by neutron activation analysis in order to estimate their age. The temporal attributing of Malu Rosu archaeological settlement has been extensively analyzed. The radiocarbon age, determined by accelerator mass spectrometry, for this site is 5510±200 BP. This is in agreement with the age of 6000±2000 BP, obtained by the dating method based on fluorine content, determined by neutron activation analysis.  相似文献   

9.
Bones are potentially the best age indicators in a stratigraphic study, because they are closely related to the layer in which they are found. Collagen is the most suitable fraction and is the material normally used in radiocarbon dating. Bone contaminants can strongly alter the carbon isotopic fraction values of the samples, so chemical pretreatment for 14 C dating by accelerator mass spectrometry (AMS) is essential. The most widespread method for collagen extraction is based on the Longin procedure, which consists in HCl demineralization to dissolve the inorganic phase of the samples, followed by dissolution of collagen in a weak acid solution. In this work the possible side effects of this procedure on a modern bone are presented; the extracted collagen was analyzed by ATR-IR spectroscopy. An alternative procedure, based on use of HF instead of HCl, to minimize unwanted degradation of the organic fraction, is also given. A study by ATR-IR spectroscopic analysis of collagen collected after different demineralization times and with different acid volumes, and a study of an archaeological sample, are also presented.  相似文献   

10.
Radiocarbon ages of 17 ancient Japanese documents of known age and 3 unknown samples were measured by AMS. Radiocarbon dating on the known documents concluded that the Japanese paper is a suitable sample for radiocarbon dating because of small discrepancy between the calibrated radiocarbon age and the historical age due to the characteristics of Japanese paper. From the dating of the paper samples of unknown age, the wood-block prints, it was clarified that they had been produced between the 11th century and the first half of the 12th century as the historical information suggested.  相似文献   

11.
Extraordinary electronic and photonic features render black phosphorus (BP) an important material for the development of novel electronics and optoelectronics. Despite recent progress in the preparation of thinly layered BP flakes, scalable synthesis of large‐size, pristine BP flakes remains a major challenge. An electrochemical delamination strategy is demonstrated that involves intercalation of diverse cations in non‐aqueous electrolytes, thereby peeling off bulk BP crystals into defect‐free flakes comprising only a few layers. The interplay between tetra‐n‐butylammonium cations and bisulfate anions promotes a high exfoliation yield up to 78 % and large BP flakes up to 20.6 μm. Bottom‐gate and bottom‐contact field‐effect transistors, comprising single BP flakes only a few layers thick, exhibit a high hole mobility of 252±18 cm2 V?1 s?1 and a remarkable on/off ratio of (1.2±0.15)×105 at 143 K under vacuum. This efficient and scalable delamination method holds great promise for development of BP‐based composites and optoelectronic devices.  相似文献   

12.
The investigation of hunter-gatherers archaeological sites in the Limay river basin, Patagonia, Argentina, raised questions concerning the lithic technology. The chemical characterization of artifacts, rocks and possible sources of provenances could help to elucidate the hunter-gatherer mobility. In three archaeological sites—Rincón Chico 2 (RCh2/87; 14C 710 ± 60 BP), Cueva Traful I (CTI; 14C 9430 ± 230 BP) and Casa de Piedra de Ortega (CPO; 14C 2840 ± 80 BP), tools and debitage or discarded flakes made in black volcanic rock have been found. Nearby an extensive rock outcrop of black volcanite, Paso Limay quarry (CPL), with similar characteristics was located. Samples coming from these four sites were analyzed by energy dispersive X-ray fluorescence spectrometry. This characterization allowed the geochemical classification of the lithic material and to correlate the samples with the suspected source after a previous statistical analysis. The majority of the samples were classified as dacites and rhyolites. Only samples coming from CPO site, the closest place to CPL were made exclusively with the quarry rocks. A set of five samples from RCh2/87 and two samples from CTI appear to have same chemical composition as CPL in spite of this site is placed in the opposite bank of the Limay river suggesting that hunter-gatherers could accede to the quarry, eventually. Finally, only a set of five samples coming from RCh2/87 and CTI do not group with the quarry. This fact evidences the existence of secondary sources of supply. The information of this research allowed inferring ancient human mobility patterns in the region.  相似文献   

13.
梁淑君 《高分子科学》2010,28(3):323-330
<正>Synthesis and characterization of the copolymers(PAG) ofα-methyl styrene(AMS) and glycidyl methacrylate (GMA) are presented.The copolymers of PAG were characterized by gel permeation chromatography(GPC),Fourier transform infrared spectroscopy(FTIR),nuclear magnetic resonance(~1H-NMR) and thermogravimetery(TG).Based on the copolymer compositions determined by ~1H-NMR,the reactivity ratios of AMS and GMA were found to be 0.105±0.012 and 0.883±0.046 respectively by Kelen-Tüds method.TG revealed that thermal stability of the copolymers decreased with increasing the AMS content in the copolymers,which indicated that the degradation was mainly caused by the chain scission of AMS-containing structures.Under heating,the copolymers depolymerize at their weak bonds and form chain radicals, which could further initiate other chemical reactions.  相似文献   

14.
A 9Be-solution has been chemically prepared from phenakite (Be2SiO4) mineral grains as commercial 9Be-solutions are too high in long-lived 10Be. The solution is intended to be used as a carrier for radiochemical separation of 10Be to be measured by accelerator mass spectrometry (AMS). Thus, accurate data of the 9Be-concentration of this solution is essential to guarantee for high-accuracy 10Be data in the future. After devastating preliminary results (~8 % standard deviation), eight laboratories finally produced twelve individual results by four different analytical methods. A certain lab and method bias might be identified by sophisticated statistical evaluation. Some laboratories also (grossly) underestimate their uncertainties. Thus, the simple weighted mean of this round-robin exercise needed to be corrected by introducing additional allowances (Paule-Mandel-approach). The final result has been calculated to (2,246 ± 11) μg 9Be/(g solution) with a reasonably low weighted standard deviation of 0.49 %. The maximum deviation of a single lab value from the weighted mean is 2.4 % when removing one Grubbs outlier (11 % off from the mean) from the data set. As 10Be-data, which is usually calculated from measured 10Be/9Be by AMS and stable 9Be, cannot be more accurate than the determined 9Be-concentration, it seems highly advisable to establish or improve quality assurance by having self-made carrier-solutions analysed at more than a single lab and regularly taking part in round-robin exercises.  相似文献   

15.
Accelerator mass spectrometry (AMS) is an extremely sensitive nuclear physics technique developed in the mid-70s for radiocarbon dating of historical artefacts. The technique centres round the use of a tandem Van de Graaff accelerator to generate the potential energy to permit separation of elemental isotopes at the single atom level. AMS was first used in the early 90s for the analysis of biological samples containing enriched 14C for toxicology and cancer research. Since that time biomedical AMS has been used in the study of (1) metabolism of xenobiotics in animals and humans (2) pathways of drug metabolism (3) biomarkers (4) metabolism of endogenous molecules including vitamins (5) DNA and protein binding studies and (6) clinical diagnosis. A new drug development concept which relies on the ultrasensitivity of AMS known as human microdosing (Phase 0) is being used to obtain early human metabolism information of candidate drugs arising out of discovery. These various aspects of AMS are reviewed in this article and a perspective on future applications of AMS provided.  相似文献   

16.
Despite the emission of only low energy Auger electrons (ca. 3.6 keV) and the difficulty of obtaining a certified standard, Liquid scintillation counting (LSC) determinations are still reasonable options for a radioanalytical laboratory involved in nuclear installation decommission. Besides, accelerator mass spectrometry (AMS), being the most sensitive analytical technique not only for 41Ca, is gaining increasingly broader accessibility and applicability. Herein, we present a radiochemical separation procedure developed for 41Ca determination with LSC and AMS in varying materials (i.e. water, concrete, sediment, soil, and biota). The radioanalytical isolation consists of anion exchange and extraction chromatography as well as carbonate precipitation and recrystallization from organic solvents. Thereby, interfering radionuclides as 55Fe, 60Co, 152Eu, U or actinides are removed with decontamination factors of 102–104. Quench curves for determining the measurement efficiency is generated with a 41Ca solution gained from the 41Ca/40Ca certified reference material ERM-AE701. In routine application the procedure is characterized by chemical yields of 67–86 %, measurement efficiencies of 1–10 % and detection limits of 0.05 Bq g?1 and 0.3 Bq L?1. Aliquots of the digestion solutions of LSC can be easily converted into CaF2–AMS targets by successive oxsalate and fluoride precipitation. Pros and cons for both measurement techniques are addressed based on 41Ca results from LSC and AMS for the same material.  相似文献   

17.
Determination of 236U/238U at natural ratios using accelerator mass spectrometry (AMS) requires overall purity of each step in the sample preparation procedures which are complex and include various chemicals. Therefore, the simplification of the procedures is desirable and can be done by implementing other effective separation materials. Among the prospective sorption materials, hydrated titanium dioxides showed promising properties for uranium extraction from various water samples. This paper shows the preparation of several titanium based sorption materials using an organic precursor and their characterization with several techniques in order to analyse crystal structure (XRPD, SEM, HRTEM, SAED) and residues of organic compounds (TG analysis and IR spectroscopy) and to quantify their sorption properties towards uranium. The practical sorption capacity of one of the prepared materials was as high as 260 mg of uranium per gram. AMS measurements showed that it is possible to prepare sufficiently pure titanium dioxides for the determination of 236U/238U ratio.  相似文献   

18.
Secondary ion mass spectrometry (SIMS) measurement of oxygen isotopes in apatite has been employed more and more in petrogenetic, metallogenic, and climate change studies. Well-characterised reference materials are needed due to the matrix effect, but they are yet to be well established. In this study, we conducted in-situ oxygen isotopic and chemical analyses on six commonly used apatite reference materials (ie, Emerald, Kovdor, McClure, Mud Tank, Otter Lake, and Slyudyanka) and two in-house apatite references (Qinghu and GEMS 203) to assess their oxygen isotope homogeneity and applicability for microbeam analyses. Our results show that all these apatite references are in general chemically homogeneous. In terms of oxygen isotopes, GEMS 203 (δ18O = 9.85 ± 0.40‰ [2SD], corrected by Durango 3), Kovdor (δ18O = 6.55 ± 0.38‰, 2SD), and McClure (δ18O = 5.94 ± 0.42‰, 2SD) are fairly homogeneous, whereas Emerald (δ18O = 10.37 ± 0.45‰, 2SD), Mud Tank (δ18O = 6.35 ± 0.46‰, 2SD), Otter Lake (δ18O = 9.71 ± 0.47‰, 2SD), Qinghu (δ18O = 5.44 ± 0.49‰, 2SD), and Slyudyanka (δ18O = 17.49 ± 0.43‰, 2SD) are less homogenous. This indicates that the former group represents better reference materials for in-situ oxygen isotopic analyses, whilst the latter group can be used as secondary reference material for analytical quality control.  相似文献   

19.
The determination of isotope ratios in individual uranium particles is very important for nuclear safeguards. In this work, accelerator mass spectrometry (AMS), thermal ionization mass spectrometry (TIMS), and secondary ion mass spectrometry (SIMS) were applied to isotope ratio analysis of individual uranium particles and compared in terms of background, measurement accuracy, and efficiency. Several individual uranium particles (1–7 μm) from certified reference materials were used as samples. The results show that the average values of blank counting rate of 235U for AMS, FT-TIMS (FT: fission track), SEM-TIMS (SEM: scanning electron microscope), and SIMS were 7.3, 7.8, 2.7 and 2.2 cps, respectively. The relative error of 234U/235U and 234U/236U isotope ratios of the particles from U200 for AMS were within 10% and 20%, whereas the results of FT-TIMS and SIMS were within 5% and 10%, respectively. The relative error and external precision of 234U/238U and 235U/238U of the particles from U850 for the method of AMS, SEM-TIMS, and SIMS were within 10% and 5%, respectively. For 236U/238U, the average values of the relative error and external precision measured by AMS were within 5%, which measured by SEM-TIMS and SIMS were all within 10%. AMS has advantages in measuring 236U/238U. The measurement time of AMS and SEM-TIMS was shorter than that of FT-TIMS and longer than that of SIMS. It is considered that AMS and SEM-TIMS have a certain development prospect, and it is necessary to research deeply.  相似文献   

20.
The aim of the study was to determine whether using chemical and radiochemical analysis of lake sediments can highlight changes in the climate. Also it was studied whether human impact on the environment can be observed and to what extent such changes are in agreement with historical data. Samples of 16 cm thick sediment cores from the Smreczynski Staw Lake were collected and divided into 1 cm thick sub-samples. The samples were air dried and homogenized. The quantitative analysis of Fe, Mn, Zn, Cr, Cu, Ni, Cd, and Pb in the digested sediment samples was made by using atomic absorption spectrometry. Simultaneously, the radioactivity of 137Cs using gamma spectrometry and 210Pbuns using alpha spectrometry, were measured for sediment layer dating. Results showed that iron concentration was in the range 0.3–over 1 % (w/w), and zinc 0.01–0.05 % (w/w). Lesser concentrations were found for copper 18.37–43.6 ppm, manganese 37.5–50.7 ppm, lead 146.1–432 ppm, chromium 12.3–37.4 ppm, nickel 3.1–10.8 ppm and cadmium 0.9–34.6 ppm. Changes in 137Cs radioactivity was in the range of 89 ± 11 to 865 ± 62 (Bq kg?1). Sediments composition can accurately reflect (in terms of time and to what extent) air pollution and natural geo-chemical processes in the environment. However, the choice of the analysed object is crucial in this respect. The Smreczynski Staw Lake, due to its location in the mountains and hydrological situation, proved to be very useful for providing undisturbed analytical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号