首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present in this paper a finite difference solver for Maxwell's equations in non‐staggered grids. The scheme formulated in time domain theoretically preserves the properties of zero‐divergence, symplecticity, and dispersion relation. The mathematically inherent Hamiltonian can be also retained all the time. Moreover, both spatial and temporal terms are approximated to yield the equal fourth‐order spatial and temporal accuracies. Through the computational exercises, modified equation analysis and Fourier analysis, it can be clearly demonstrated that the proposed triple‐preserving solver is computationally accurate and efficient for use to predict the Maxwell's solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

A finite volume/finite difference method based on Ni's multigrid formulation is introduced for the solution of Maxwell's equations. The scheme is presented for the cases of transverse magnetic scattering from two-dimensional circular and square cylinders, as well as from NACA 0012 airfoil. The codes are validated against the traditional Method of Moments, which is analogous to a panel method in CFD. The circular cylinder scattering is compared to the analytical series solution for better understanding how the roles of numerical dispersion and dissipation errors affect the solution. The reflecting boundary conditions are modeled by the idea of inducing fields inside the conductor and a method of modeling the singularities that arise at a sharp corner is presented. Absorbing boundary conditions are modeled by integrating along the characteristic compatibility equations in the direction of the outgoing wave.  相似文献   

3.
Newton's method is developed for solving the 2‐D Euler equations. The Euler equations are discretized using a finite‐volume method with upwind flux splitting schemes. Both analytical and numerical methods are used for Jacobian calculations. Although the numerical method has the advantage of keeping the Jacobian consistent with the numerical residual vector and avoiding extremely complex analytical differentiations, it may have accuracy problems and need longer execution time. In order to improve the accuracy of numerical Jacobians, detailed error analyses are performed. Results show that the finite‐difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A method is developed for calculating an optimal perturbation magnitude that can minimize the error in numerical Jacobians. The accuracy of the numerical Jacobians is improved significantly by using the optimal perturbation magnitude. The effects of the accuracy of numerical Jacobians on the convergence of the flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated only for neighbouring cells. A sparse matrix solver that is based on LU factorization is used. Effects of different flux splitting methods and higher‐order discretizations on the performance of the solver are analysed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Sophisticated catchment runoff problems necessitate conjunctive modeling of overland flow and sub‐surface flow. In this paper, finite difference numerical methods are studied for simulation of catchment runoff of two‐dimensional surface flow interacting with three‐dimensional unsaturated and saturated sub‐surface flows. The equations representing the flows are mathematically classified as a type of heat diffusion equation. Therefore, two‐ and three‐dimensional numerical methods for heat diffusion equations were investigated for applications to the surface and sub‐surface flow sub‐models in terms of accuracy, stability, and calculation time. The methods are the purely explicit method, Saul'yev's methods, the alternating direction explicit (ADE) methods, and the alternating direction implicit (ADI) methods. The methods are first examined on surface and sub‐surface flows separately; subsequently, 12 selected combinations of methods were investigated for modeling the conjunctive flows. Saul'yev's downstream (S‐d) method was found to be the preferred method for two‐dimensional surface flow modeling, whereas the ADE method of Barakat and Clark is a less accurate, stable alternative. For the three‐dimensional sub‐surface flow model, the ADE method of Larkin (ADE‐L) and Brian's ADI method are unconditionally stable and more accurate than the other methods. The calculations of the conjunctive models utilizing the S‐d surface flow sub‐model give excellent results and confirm the expectation that the errors of the surface and sub‐surface sub‐models interact. The surface sub‐model dominates the accuracy and stability of the conjunctive model, whereas the sub‐surface sub‐model dominates the calculation time, suggesting the desirability of using a smaller time increment for the surface sub‐model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The flux‐corrected‐transport paradigm is generalized to finite‐element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity‐preserving schemes are reviewed. A nonoscillatory low‐order method is constructed by elimination of negative off‐diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non‐linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a dual reciprocity boundary element method (DRBEM) formulation coupled with an implicit backward difference time integration scheme for the solution of the incompressible magnetohydrodynamic (MHD) flow equations. The governing equations are the coupled system of Navier‐Stokes equations and Maxwell's equations of electromagnetics through Ohm's law. We are concerned with a stream function‐vorticity‐magnetic induction‐current density formulation of the full MHD equations in 2D. The stream function and magnetic induction equations which are poisson‐type, are solved by using DRBEM with the fundamental solution of Laplace equation. In the DRBEM solution of the time‐dependent vorticity and current density equations all the terms apart from the Laplace term are treated as nonhomogeneities. The time derivatives are approximated by an implicit backward difference whereas the convective terms are approximated by radial basis functions. The applications are given for the MHD flow, in a square cavity and in a backward‐facing step. The numerical results for the square cavity problem in the presence of a magnetic field are visualized for several values of Reynolds, Hartmann and magnetic Reynolds numbers. The effect of each parameter is analyzed with the graphs presented in terms of stream function, vorticity, current density and magnetic induction contours. Then, we provide the solution of the step flow problem in terms of velocity field, vorticity, current density and magnetic field for increasing values of Hartmann number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We suggest a new exact method that allows one to construct solutions to a wide class of linear and some model non-linear hydrodynamic-type systems. The method is based on splitting a system into a few simpler equations; two different representations of solutions (non-symmetric and symmetric) are given. We derive formulas that connect solutions to linear three-dimensional stationary and non-stationary systems (corresponding to different models of incompressible fluids in the absence of mass forces) with solutions to two independent equations, one of which being the Laplace equation and the other following from the equation of motion for any velocity component at zero pressure. To illustrate the potentials of the method, we consider the Stokes equations, describing slow flows of viscous incompressible fluids, as well as linearized equations corresponding to Maxwell's and some other viscoelastic models. We also suggest and analyze a differential-difference fluid model with a constant relaxation time. We give examples of integrable non-linear hydrodynamic-type systems. The results obtained can be suitable for the integration of linear hydrodynamic equations and for testing numerical methods designed to solve non-linear equations of continuum mechanics.  相似文献   

8.
A principal interval decomposition (PID) approach is presented for the reduced‐order modeling of unsteady Boussinesq equations. The PID method optimizes the lengths of the time windows over which proper orthogonal decomposition (POD) is performed and can be highly effective in building reduced‐order models for convective problems. The performance of these POD models with and without using the PID approach is investigated by applying these methods to the unsteady lock‐exchange flow problem. This benchmark problem exhibits a strong shear flow induced by a temperature jump and results in the Kelvin–Helmholtz instability. This problem is considered a challenging benchmark problem for the development of reduced‐order models. The reference solutions are obtained by direct numerical simulations of the vorticity and temperature transport equations using a compact fourth‐order‐accurate scheme. We compare the accuracy of reduced‐order models developed with different numbers of POD basis functions and different numbers of principal intervals. A linear interpolation model is constructed to obtain basis functions when varying physical parameters. The predictive performance of our models is then analyzed over a wide range of Reynolds numbers. It is shown that the PID approach provides a significant improvement in accuracy over the standard Galerkin POD reduced‐order model. This numerical assessment of the PID shows that it may represent a reliable model reduction tool for convection‐dominated, unsteady‐flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Lagrangian particle methods such as smoothed particle hydrodynamics (SPH) are very demanding in terms of computing time for large domains. Since the numerical integration of the governing equations is only carried out for each particle on a restricted number of neighbouring ones located inside a cut‐off radius rc, a substantial part of the computational burden depends on the actual search procedure; it is therefore vital that efficient methods are adopted for such a search. The cut‐off radius is indeed much lower than the typical domain's size; hence, the number of neighbouring particles is only a little fraction of the total number. Straightforward determination of which particles are inside the interaction range requires the computation of all pair‐wise distances, a procedure whose computational time would be unpractical or totally impossible for large problems. Two main strategies have been developed in the past in order to reduce the unnecessary computation of distances: the first based on dynamically storing each particle's neighbourhood list (Verlet list) and the second based on a framework of fixed cells. The paper presents the results of a numerical sensitivity study on the efficiency of the two procedures as a function of such parameters as the Verlet size and the cell dimensions. An insight is given into the relative computational burden; a discussion of the relative merits of the different approaches is also given and some suggestions are provided on the computational and data structure of the neighbourhood search part of SPH codes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
We present a solver for a three‐dimensional Poisson equation issued from the Navier–Stokes equations applied to model rivers, estuaries, and coastal flows. The three‐dimensional physical domain is composed of an arbitrary domain in the horizontal direction and is bounded by an irregular free surface and bottom in the vertical direction. The equations are transformed vertically to the σ‐coordinate system to obtain an accurate representation of top and bottom topographies. The method is based on a second‐order finite volume technique on prisms consisting of triangular grids in the horizontal direction. The algorithm is accompanied by an analysis of different linear system solvers in order to achieve fast solutions. Numerical experiments are conducted to test the numerical accuracy and the computational efficiency of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A finite volume solver for the 2D depth‐integrated harmonic hyperbolic formulation of the mild‐slope equation for wave propagation is presented and discussed. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov‐type second‐order finite volume scheme, whereby the numerical fluxes are computed using Roe's flux function. The eigensystem of the mild‐slope equations is derived and used for the construction of Roe's matrix. A formulation that updates the unknown variables in time implicitly is presented, which produces a more accurate and reliable scheme than hitherto available. Boundary conditions for different types of boundaries are also derived. The agreement of the computed results with analytical results for a range of wave propagation/transformation problems is very good, and the model is found to be virtually paraxiality‐free. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic damping method. The solution algorithm presently under consideration is based on Roe's approximate Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43 : 357–372] for non‐structured meshes. The numerical flux functions are modified by using Turkel's preconditioning technique proposed by Viozat [Implicit upwind schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January 1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization term proposed in the present study. These methods allow the compressible Euler equations at low‐Mach number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed modifications have been assessed by comparison with experimental data and other numerical results in the literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The Euler equations are solved for non‐hydrostatic atmospheric flow problems in two dimensions using a high‐resolution Godunov‐type scheme. The Riemann problem is solved using a flux‐based wave decomposition suggested by LeVeque. This paper describes in detail, the design and implementation of the Riemann solver used for computing the Godunov fluxes. The methodology is then validated against benchmark cases for non‐hydrostatic atmospheric flows. Comparisons are made with solutions obtained from the National Center for Atmospheric Research's state‐of‐the‐art numerical model. The method shows promise in simulating non‐hydrostatic flows, which are characterized by steep gradients on the meso‐, micro‐ and urban‐scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Projection methods are among the most adopted procedures for solving the Navier–Stokes equations system for incompressible flows. In order to simplify the numerical procedures, the pressure–velocity de‐coupling is often obtained by adopting a fractional time‐step method. In a specific formulation, suitable for the incompressible flows equations, it is based on a formal decomposition of the momentum equation, which is related to the Helmholtz–Hodge Decomposition theorem of a vector field in a finite domain. Owing to the continuity constraint also in large eddy simulation of turbulence, as happens for laminar solutions, the filtered pressure characterizes itself only as a Lagrange multiplier, not a thermodynamic state variable. The paper illustrates the implications of adopting such procedures when the decoupling is performed onto the filtered equations system. This task is particularly complicated by the discretization of the time integral of the sub‐grid scale tensor. A new proposal for developing time‐accurate and congruent intermediate boundary conditions is addressed. Several tests for periodic and non‐periodic channel flows are presented. This study follows and completes the previous ones reported in (Int. J. Numer. Methods Fluids 2003; 42, 43 ). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high‐order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier–Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity–velocity formulation for a two‐dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high‐order compact and non‐compact finite‐differences from fourth‐order to sixth‐order of accuracy. The other scheme used spectral methods instead of finite‐difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed‐order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We propose two‐dimensional central finite volume methods based on our multidimensional extensions of Nessyahu and Tadmor's one‐dimensional non‐oscillatory central scheme and a constrained transport‐type method to solve ideal magnetohydrodynamic problems (MHD) and shallow water magnetohydrodynamic problems (SMHD). The main numerical scheme is second‐order accurate both in space and time and uses an original Cartesian grid coupled to a Cartesian‐ or diamond‐staggered dual grid to by‐pass the resolution of the Riemann problems at the cell interfaces. To treat the non‐vanishing magnetic field/flux divergence we have constructed an adaptation of Evans and Hawley's constrained transport method specifically designed for central schemes. Our numerical results show the efficiency and the potential of the scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, an approach is proposed for solving the 3D shallow water equations with embedded boundaries that are not aligned with the underlying horizontal Cartesian grid. A hybrid cut‐cell/ghost‐cell method is used together with a direction‐splitting implicit solver: Ghost cells are used for the momentum equations in order to prescribe the correct boundary condition at the immersed boundary, while cut cells are used in the continuity equation in order to conserve mass. The resulting scheme is robust, does not suffer any time step limitation for small cut cells, and conserves fluid mass up to machine precision. Moreover, the solver displays a second‐order spatial accuracy, both globally and locally. Comparisons with analytical solutions and reference numerical solutions on curvilinear grids confirm the quality of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A first‐order finite volume model for the resolution of the 2D shallow water equations with turbulent term is presented. An upwind discretization of the equations that include the turbulent term is carried out. A method to reduce the excess of numerical viscosity (or diffusion) produced by the upwinding of the flux term is proposed. Two different discretizations of the turbulent term are compared, and results for uniform distributions of the viscosity are presented. Finally, two discretizations of the time derivative which are more efficient than Euler's are proposed and compared. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical algorithm for the solution of advection–diffusion equation on the surface of a sphere is suggested. The velocity field on a sphere is assumed to be known and non‐divergent. The discretization of advection–diffusion equation in space is carried out with the help of the finite volume method, and the Gauss theorem is applied to each grid cell. For the discretization in time, the symmetrized double‐cycle componentwise splitting method and the Crank–Nicolson scheme are used. The numerical scheme is of second order approximation in space and time, correctly describes the balance of mass of substance in the forced and dissipative discrete system and is unconditionally stable. In the absence of external forcing and dissipation, the total mass and L2‐norm of solution of discrete system is conserved in time. The one‐dimensional periodic problems arising at splitting in the longitudinal direction are solved with Sherman–Morrison's formula and Thomas's algorithm. The one‐dimensional problems arising at splitting in the latitudinal direction are solved by the bordering method that requires a prior determination of the solution at the poles. The resulting linear systems have tridiagonal matrices and are solved by Thomas's algorithm. The suggested method is direct (without iterations) and rapid in realization. It can also be applied to linear and nonlinear diffusion problems, some elliptic problems and adjoint advection–diffusion problems on a sphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A spectral collocation method is developed for solving the three‐dimensional transient Navier–Stokes equations in cylindrical coordinate system. The Chebyshev–Fourier spectral collocation method is used for spatial approximation. A second‐order semi‐implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant–Friedrichs–Lewy (CFL) condition, and is second‐order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in r‐, ? ‐, and z‐directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss–Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss–Lobatto points in radial direction to avoid the axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号