首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A kinetic energy analysis of total energy differences in 115 atomic multiplet states is presented. We show by numerical restricted Hartree—Fock calculations that there is a reasonably accurate linear relationship between the kinetic energy of the electrons in open subshells and the total energy within a manifold of states arising from the same spn or s2pn (n = 2,3,4) electron configuration in main-group atoms. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

3.
The spin‐Hamiltonian valence bond theory relies upon covalent configurations formed by singly occupied orbitals differing by their spin counterparts. This theory has been proven to be successful in studying potential energy surfaces of the ground and lowest excited states in organic molecules when used as a part of the hybrid molecular mechanics—valence bond method. The method allows one to consider systems with large active spaces formed by n electrons in n orbitals and relies upon a specially proposed graphical unitary group approach. At the same time, the restriction of the equality of the numbers of electrons and orbitals in the active space is too severe: it excludes from the consideration a lot of interesting applications. We can mention here carbocations and systems with heteroatoms. Moreover, the structure of the method makes it difficult to study charge‐transfer excited states because they are formed by ionic configurations. In the present work we tackle these problems by significant extension of the spin‐Hamiltonian approach. We consider (i) more general active space formed by n ± m electrons in n orbitals and (ii) states with the charge transfer. The main problem addressed is the generation of Hamiltonian matrices for these general cases. We propose a scheme combining operators of electron exchange and hopping, generating all nonzero matrix elements step‐by‐step. This scheme provides a very efficient way to generate the Hamiltonians, thus extending the applicability of spin‐Hamiltonian valence bond theory. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
Electronic‐structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia‐borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β‐diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia‐borane optimized for chemical hydrogen storage and allowing for low‐energy dehydrogenation. The interaction of ammonia‐borane, and related substituted ammonia‐boranes, with a bifunctional η6‐arene ruthenium catalyst and associated variants is investigated for dehydrogenation. Interestingly, in a number of cases, hydride‐proton transfer from the substituted ammonia‐borane to the catalyst undergoes a barrier‐less process in the gas phase, with rapid formation of hydrogenated catalyst in the gas phase. Amongst the catalysts considered, N,N‐difluoro ammonia‐borane and N‐phenyl ammonia‐borane systems resulted in negative activation energy barriers. However, these types of ammonia‐boranes are inherently thermodynamically unstable and undergo barrierless decay in the gas phase. Apart from N,N‐difluoro ammonia‐borane, the interaction between different types of catalyst and ammonia borane was modeled in the solvent phase, revealing free‐energy barriers slightly higher than those in the gas phase. Amongst the various potential candidate Ru‐complexes screened, few are found to differ in terms of efficiency for the dehydrogenation (rate‐limiting) step. To model dehydrogenation more accurately, a selection of explicit protic solvent molecules was considered, with the goal of lowering energy barriers for H‐H recombination. It was found that primary (1°), 2°, and 3° alcohols are the most suitable to enhance reaction rate. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The discovery of the covalent‐like character of the hydrogen bonding (H‐bonding) system [Science 342 , 611(2013)] has promoted a renewal of our understanding of the electronic and geometric structures of water clusters. In this work, based on density functional theory calculations, we show that the preferential formation of a stable quasiplanar structure of (H2O)n(n = 3–6) is closely related to three kinds of delocalized molecular orbitals (MOs; denoted as MO‐I, II, and III) of water rings. These originate from the 2p lone pair electrons of oxygen (O), the 2p bond electrons of O and the 1s electrons of H and the 2s electrons of O and 1s electrons of H, respectively. To maximize the orbital overlaps of the three MOs, geometric planarization is needed. The contribution of the orbital interaction is more than 30% in all the water rings according to our energy decomposition analysis, highlighting the considerable covalent‐like characters of H‐bonds. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
β‐Carotene in n‐hexane was examined by femtosecond transient absorption and stimulated Raman spectroscopy. Electronic change is separated from vibrational relaxation with the help of band integrals. Overlaid on the decay of S1 excited‐state absorption, a picosecond process is found that is absent when the C9‐methyl group is replaced by ethyl or isopropyl. It is attributed to reorganization on the S1 potential energy surface, involving dihedral angles between C6 and C9. In Raman studies, electronic states S2 or S1 were selected through resonance conditions. We observe a broad vibrational band at 1770 cm?1 in S2 already. With 200 fs it decays and transforms into the well‐known S1 Raman line for an asymmetric C=C stretching mode. Low‐frequency activity (<800 cm?1) in S2 and S1 is also seen. A dependence of solvent lines on solute dynamics implies intermolecular coupling between β‐carotene and nearby n‐hexane molecules.  相似文献   

7.
The dynamics of ammonia clusters excited to the à state with 160 fs laser pulses of 6.2 eV was studied by pump-probe experiments with a low probe photon energy of 3.1 eV. Protonated as well as unprotonated cluster ion signals have been observed. The time evolution of both species is characteristic of the intermediate rearrangement and fragmentation processes. The observations strongly support a previously developed kinetic model for this dynamics with the signal at long delay times>6 ps reflecting the species involved in the absorption dissociation ionization (ADI) mechanism. Strong evidence is found for the formation of an internally ‘quasi protonated’ excited state and of ammoniated NH4 radicals.  相似文献   

8.
Excited‐state energy dynamics of the conjugated polycarbogermane oligomers, poly{[1,4‐bis(thiophenyl)buta‐1,3‐diyne]‐alt‐(dimethylgermane)} (PBTBD‐DMG; n = 33), poly{[1,4‐bis‐(thiophenyl)buta‐1,3‐diyne]‐alt‐(diphethylgermane)} (PBTBD‐DPG; n = 12), poly{[1,4‐bis(phenyl)buta‐1,3‐diyne]‐alt‐(dimethylgermane)} (PBPBD‐DMG; n = 36), and poly{[1,4‐bis(phenyl)buta‐1,3‐diyne]‐alt‐(diphenylgermane)} (PBPBD‐DPG; n = 2), were investigated by steady‐state and picosecond time‐resolved fluorescence spectroscopies in liquid solution. The introduction effect of a germanium atom into π‐conjugated oligomer backbones and the substitution effect of a methyl or phenyl group on the germanium atom are discussed from solvent polarity‐dependent studies. Steady‐state and time‐resolved fluorescence studies on the thiophene‐containing polycarbogermane (PBTBD‐DMG and PBTBD‐DPG) oligomers revealed considerable solvent polarity‐dependent characteristics, whereas those of the phenylene‐containing polycarbogermane (PBPBD‐DMG and PBPBD‐DPG) oligomers do not significantly show such characteristics. As the solvent polarity increased from n‐hexane to tetrahydrofuran, the steady‐state fluorescence spectra of PBTBD‐DMG and PBTBD‐DPG oligomers were significantly redshifted, and their fluorescence lifetimes seemed to change from ~624 to ~46 ps. These results suggest that the excited‐state dynamics of PBTBD‐DMG and PBTBD‐DPG oligomers are related to an intramolecular charge transfer (ICT) emission process through (d‐p) π conjugation between the π‐conjugated system and unoccupied 4d orbitals of the germanium atom. These results are supported by quantum chemical (AM1 and CNDO/2) calculations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1298–1306, 2002  相似文献   

9.
The early stages of the Coulomb explosion of a doubly ionized water molecule immersed in liquid water are investigated with time‐dependent density functional theory molecular dynamics (TD–DFT MD) simulations. Our aim is to verify that the double ionization of one target water molecule leads to the formation of atomic oxygen as a direct consequence of the Coulomb explosion of the molecule. To that end, we used TD–DFT MD simulations in which effective molecular orbitals are propagated in time. These molecular orbitals are constructed as a unitary transformation of maximally localized Wannier orbitals, and the ionization process was obtained by removing two electrons from the molecular orbitals with symmetry 1B1, 3A1, 1B2 and 2A1 in turn. We show that the doubly charged H2O2+ molecule explodes into its three atomic fragments in less than 4 fs, which leads to the formation of one isolated oxygen atom whatever the ionized molecular orbital. This process is followed by the ultrafast transfer of an electron to the ionized molecule in the first femtosecond. A faster dissociation pattern can be observed when the electrons are removed from the molecular orbitals of the innermost shell. A Bader analysis of the charges carried by the molecules during the dissociation trajectories is also reported.  相似文献   

10.
Poly[oxymulti(dimethylsilylenes)], —[(Me2Si)mO]n—, are thermodynamically unstable and undergo exothermic base‐catalyzed bond redistribution producing polydimethylsiloxanes and polydimethylsilanes. The enthalpy and free energy of redistribution of model hydrogen‐substituted polyoxydisilylenes, —[(H2Si)2O]n— were calculated by ab‐initio methods (DFT and CBS‐4). Thermochemistry of polyoxydisilylene disproportionation was compared with analogous hypothetical reaction of poly(ethylene oxide). The enthalpies of reactions were calculated to be ca. –10 kcal/SiSiO and –6 kcal/CCO, respectively. Calculations show that the thermodynamic stability of polysiloxanes and polyacetals, respectively, due to the nO → σ*XO hyperconjugation, where X = Si, C, is the main driving force for these reactions. The difference in reactivity between polyoxymultisilylenes and polyethers has a kinetic origin and may be explained by the difference in activation energies associated with heterolytic cleavage of the X—X and X—O bonds.  相似文献   

11.
The differential virial theorem (DVT) is an explicit relation between the electron density ρ( r ), the external potential, kinetic energy density tensor, and (for interacting electrons) the pair function. The time‐dependent generalization of this relation also involves the paramagnetic current density. We present a detailed unified derivation of all known variants of the DVT starting from a modified equation of motion for the current density. To emphasize the practical significance of the theorem for noninteracting electrons, we cast it in a form best suited for recovering the Kohn–Sham effective potential vs( r ) from a given electron density. The resulting expression contains only ρ( r ), vs( r ), kinetic energy density, and a new orbital‐dependent ingredient containing only occupied Kohn–Sham orbitals. Other possible applications of the theorem are also briefly discussed. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Summary A kinetic energy analysis of total energy differences in atomic multiplets arising fromf m (m=2–12) electronic configurations is performed within the nonrelativistic restricted Hartree-Fock framework. For these 1290 multiplets of 22 lanthanoid (Ce to Er) and actinoid (Th to Fm) atoms, a very good linear correlation between the total energy difference and the kinetic energy difference of the outermostf-electrons is found. The present results, together with our previous ones for the multiplets arising froms mpn (m=1,2;n=2–4) ands mdn (m=0–2;n=2–8) electronic configurations, demonstrate that the kinetic energy difference of electrons in open subshells is an excellent predictor of total energy differences among atomic multiplet states.  相似文献   

13.
Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH‐zone‐refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution–extrusion mode was investigated for pH‐zone‐refining countercurrent chromatography for the first time. A two‐phase solvent system composed of n‐hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n‐hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH‐zone‐refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH‐zone‐refining countercurrent chromatography, yielding 53 mg of aurantio‐obtusin, 40 mg of chryso‐obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high‐performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH‐zone‐refining mode was observed and discussed.  相似文献   

14.
An automated dispersive liquid–liquid microextraction integrated with gas chromatography and mass spectrometric procedure was developed for the determination of three N‐nitrosamines (N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine) in water samples. Response surface methodology was employed to optimize relevant extraction parameters including extraction time, dispersive solvent volume, water sample pH, sodium chloride concentration, and agitation (stirring) speed. The optimal dispersive liquid–liquid microextraction conditions were 28 min of extraction time, 33 μL of methanol as dispersive solvent, 722 rotations per minute of agitation speed, 23% w/v sodium chloride concentration, and pH of 10.5. Under these conditions, good linearity for the analytes in the range from 0.1 to 100 μg/L with coefficients of determination (r2) from 0.988 to 0.998 were obtained. The limits of detection based on a signal‐to‐noise ratio of 3 were between 5.7 and 124 ng/L with corresponding relative standard deviations from 3.4 to 5.9% (n = 4). The relative recoveries of N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine from spiked groundwater and tap water samples at concentrations of 2 μg/L of each analyte (mean ± standard deviation, n = 3) were (93.9 ± 8.7), (90.6 ± 10.7), and (103.7 ± 8.0)%, respectively. The method was applied to determine the N‐nitrosamines in water samples of different complexities, such as tap water, and groundwater, before and after treatment, in a local water treatment plant.  相似文献   

15.
16.
The role solvent plays in reactions involving frustrated Lewis pairs (FLPs)—for example, the stoichiometric mixture of a bulky Lewis acid and a bulky Lewis base—still remains largely unexplored at the molecular level. For a reaction of the phosphorus/boron FLP and dissolved CO2 gas, first principles (Born–Oppenheimer) molecular dynamics with explicit solvent reveals a hitherto unknown two‐step reaction pathway—one that complements the concerted (one‐step) mechanism known from the minimum‐energy‐path calculations. The rationalization of the discovered reaction pathway—that is, the stepwise formation of P?C and O?B bonds—is that the environment (typical organic solvents) stabilizes an intermediate which results from nucleophilic attack of the phosphorus Lewis base on CO2. This finding is significant because presently the concerted reaction‐path paradigm predominates in the rationalization of FLP reactivity. Herein we point out how to attain experimental proof of our results.  相似文献   

17.
Dr. Heiko Jacobsen 《Chemphyschem》2014,15(12):2522-2529
Analysis of the kinetic energy density within a molecule identifies patterns in its electronic structure that are linked to the concept of charge‐shift bonding. This is illustrated in a detailed study of twelve molecules, possessing carbon‐carbon covalent as well as carbon‐carbon charge‐shift bonds in various degrees of orders, including propellanes and heteropropellanes. Regions of slow electrons are fundamental for such a correlation, and a RoSE (region of slow electrons) indicator ν±, based on the positive definite kinetic energy density τ, is employed to characterize classes of charge‐shift bonds in terms of its full topology of all critical points of rank three.  相似文献   

18.
In contrast to the extensive theoretical investigation of the solvation phenomena, the dissolution phenomena have hardly been investigated theoretically. Upon the excitation of hydrated halides, which are important substances in atmospheric chemistry, an excess electron transfers from the anionic precursor (halide anion) to the solvent and is stabilized by the water cluster. This results in the dissociation of hydrated halides into halide radicals and electron-water clusters. Here we demonstrate the charge-transfer-to-solvent (CTTS)-driven femtosecond-scale dissolution dynamics for I-(H2O)n=2-5 clusters using excited state (ES) ab initio molecular dynamics (AIMD) simulations employing the complete-active-space self-consistent-field (CASSCF) method. This study shows that after the iodine radical is released from I-(H2O)n=2-5, a simple population decay is observed for small clusters (2 相似文献   

19.
The dynamics and mechanisms of proton dissociation and transfer in hydrated phosphoric acid (H3PO4) clusters under excess proton conditions were studied based on the concept of presolvation using the H3PO4–H3O+nH2O complexes (n = 1–3) as the model systems and ab initio calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the RIMP2/TZVP level as model calculations. The static results showed that the smallest, most stable intermediate complex for proton dissociation (n = 1) is formed in a low local‐dielectric constant environment (e.g., ε = 1), whereas proton transfer from the first to the second hydration shell is driven by fluctuations in the number of water molecules in a high local‐dielectric constant environment (e.g., ε = 78) through the Zundel complex in a linear H‐bond chain (n = 3). The two‐dimensional potential energy surfaces (2D‐PES) of the intermediate complex (n = 1) suggested three characteristic vibrational and 1H NMR frequencies associated with a proton moving on the oscillatory shuttling and structural diffusion paths, which can be used to monitor the dynamics of proton dissociation in the H‐bond clusters. The BOMD simulations over the temperature range of 298–430 K validated the proposed proton dissociation and transfer mechanisms by showing that good agreement between the theoretical and experimental data can be achieved with the proposed rate‐determining processes. The theoretical results suggest the roles played by the polar solvent and iterate that insights into the dynamics and mechanisms of proton transfer in the protonated H‐bond clusters can be obtained from intermediate complexes provided that an appropriate presolvation model is selected and that all of the important rate‐determining processes are included in the model calculations. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
The relaxation of O-H bending of water molecule H2O in the liquid phase was studied with the molecular dynamics simulation approach. Both rigid and fexible solvents were used to identify the di?erent channels for the vibrational energy relaxation. It was observed that the relaxation time for the O-H bend overtone is 174 fs in the rigid solvent while it is 115 fs in the fexible solvent. The main pathway of the O-H bend overtone is transition to the bend fundamental. The relaxation time of the O-H bend fundamental was calculated as 204 fs which is comparable to the experimental value 170 fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号