首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Given a fixed multigraph H with V(H) = {h1,…, hm}, we say that a graph G is H‐linked if for every choice of m vertices v1, …, vm in G, there exists a subdivision of H in G such that for every i, vi is the branch vertex representing hi. This generalizes the notion of k‐linked graphs (as well as some other notions). For a family of graphs, a graph G is ‐linked if G is H‐linked for every . In this article, we estimate the minimum integer r = r(n, k, d) such that each n‐vertex graph with is ‐linked, where is the family of simple graphs with k edges and minimum degree at least . © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14–26, 2008  相似文献   

2.
A homomorphism from an oriented graph G to an oriented graph H is a mapping from the set of vertices of G to the set of vertices of H such that is an arc in H whenever is an arc in G. The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (the line digraph LD(G) of G is given by V(LD(G)) = A(G) and whenever and ). We give upper bounds for the oriented chromatic index of graphs with bounded acyclic chromatic number, of planar graphs and of graphs with bounded degree. We also consider lower and upper bounds of oriented chromatic number in terms of oriented chromatic index. We finally prove that the problem of deciding whether an oriented graph has oriented chromatic index at most k is polynomial time solvable if k ≤ 3 and is NP‐complete if k ≥ 4. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 313–332, 2008  相似文献   

3.
Given a set of graphs, a graph G is ‐free if G does not contain any member of as an induced subgraph. We say that is a degree‐sequence‐forcing set if, for each graph G in the class of ‐free graphs, every realization of the degree sequence of G is also in . We give a complete characterization of the degree‐sequence‐forcing sets when has cardinality at most two. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 131–148, 2008  相似文献   

4.
To suppress a vertex in a finite graph G means to delete it and add an edge from a to b if a, b are distinct nonadjacent vertices which formed the neighborhood of . Let be the graph obtained from by suppressing vertices of degree at most 2 as long as it is possible; this is proven to be well defined. Our main result states that every 3‐connected graph G has a vertex x such that is 3‐connected unless G is isomorphic to , , or to a wheel for some . This leads to a generator theorem for 3‐connected graphs in terms of series parallel extensions. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 41–54, 2008  相似文献   

5.
We study vertex‐colorings of plane graphs that do not contain a rainbow face, i.e., a face with vertices of mutually distinct colors. If G is a 3 ‐connected plane graph with n vertices, then the number of colors in such a coloring does not exceed . If G is 4 ‐connected, then the number of colors is at most , and for n≡3(mod8), it is at most . Finally, if G is 5 ‐connected, then the number of colors is at most . The bounds for 3 ‐connected and 4 ‐connected plane graphs are the best possible as we exhibit constructions of graphs with colorings matching the bounds. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 129–145, 2010  相似文献   

6.
Let consist of all simple graphs on 2k vertices and edges. For a simple graph G and a positive integer , let denote the number of proper vertex colorings of G in at most colors, and let . We prove that and is the only extremal graph. We also prove that as . © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 135–148, 2007  相似文献   

7.
A spanning subgraph G of a graph H is a kdetour subgraph of H if for each pair of vertices , the distance, , between x and y in G exceeds that in H by at most k. Such subgraphs sometimes also are called additive spanners. In this article, we study k‐detour subgraphs of the n‐dimensional cube, , with few edges or with moderate maximum degree. Let denote the minimum possible maximum degree of a k‐detour subgraph of . The main result is that for every and On the other hand, for each fixed even and large n, there exists a k‐detour subgraph of with average degree at most . © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 55–64, 2008  相似文献   

8.
In this note, we prove that the cop number of any n‐vertex graph G, denoted by , is at most . Meyniel conjectured . It appears that the best previously known sublinear upper‐bound is due to Frankl, who proved . © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 45–48, 2008  相似文献   

9.
A plane graph G is coupled k‐choosable if, for any list assignment L satisfying for every , there is a coloring that assigns to each vertex and each face a color from its list such that any two adjacent or incident elements receive distinct colors. We prove that every plane graph is coupled 7‐choosable. We further show that maximal plane graphs, ‐minor free graphs, and plane graphs with maximum degree at most three are coupled 6‐choosable. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 27–44, 2008  相似文献   

10.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are incident. Let □ , where □ denotes Cartesian product and H is an ‐regular graph of odd order, with (thus, G is s‐regular). We prove that , where is the minimum, over all bases of the cycle space of H, of the maximum length of a cycle in the basis. When and m is large, the lower bound is sharp. In particular, if , then □ , independent of m. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 7–18, 2008  相似文献   

11.
In this article, we obtain some Ore‐type sufficient conditions for a graph to have a connected factor with degree restrictions. Let α and k be positive integers with if and if . Let G be a connected graph with a spanning subgraph F, each component of which has order at least α. We show that if the degree sum of two nonadjacent vertices is greater than then G has a connected subgraph in which F is contained and every vertex has degree at most . From the result, we derive that a graph G has a connected ‐factor if the degree sum of two nonadjacent vertices is at least . © Wiley Periodicals, Inc. J. Graph Theory 56: 241–248, 2007  相似文献   

12.
An induced subgraph of a graph is called a derived subgraph of if contains no isolated vertices. An edge e of is said to be residual if e occurs in more than half of the derived subgraphs of . In this article, we prove that every simple graph with at least one edge contains a non‐residual edge. This was conjectured by El‐Zahar in 1997. © 2008 Wiley Periodicals, Inc. J Graph Theory 57: 344–352, 2008  相似文献   

13.
The linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama et al. conjectured that for any simple graph G. Wu wu proved the conjecture for a planar graph G of maximum degree . It is noted here that the conjecture is also true for . © 2008 Wiley Periodicals, Inc. J Graph Theory 58:210‐220, 2008  相似文献   

14.
If is a class of oriented graphs (directed graphs without opposite arcs), then an oriented graph is a homomorphism bound for if there is a homomorphism from each graph in to H. We find some necessary conditions for a graph to be a homomorphism bound for the class of oriented planar graphs and prove that such a graph must have maximum degree at least 16; thus there exists an oriented planar graph with oriented chromatic number at least 17. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 175–190, 2007  相似文献   

15.
A class of graphs ordered by the homomorphism relation is universal if every countable partial order can be embedded in . It is known (see [ 1 , 3 ]) that the class of k‐colorable graphs, for any fixed , induces a universal partial order. In 4 , a surprisingly small subclass of which is a proper subclass of the series‐parallel graphs (the K4‐minor‐free graphs) is shown to be universal. On another side, Pan and Zhu in 7 proved a density result that for each rational number , there is a K4‐minor‐free graph with circular chromatic number equal to a/b. In this note, we show for each rational number a/b within this interval the class of K4‐minor‐free graphs with circular chromatic number a/b is universal if and only if , 5/2 or 3. This shows yet another surprising richness of the K4‐minor‐free class that it contains universal classes as dense as the rational numbers. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
We study the cover time of random geometric graphs. Let $I(d)=[0,1]^{d}$ denote the unit torus in d dimensions. Let $D(x,r)$ denote the ball (disc) of radius r. Let $\Upsilon_d$ be the volume of the unit ball $D(0,1)$ in d dimensions. A random geometric graph $G=G(d,r,n)$ in d dimensions is defined as follows: Sample n points V independently and uniformly at random from $I(d)$ . For each point x draw a ball $D(x,r)$ of radius r about x. The vertex set $V(G)=V$ and the edge set $E(G)=\{\{v,w\}: w\ne v,\,w\in D(v,r)\}$ . Let $G(d,r,n),\,d\geq 3$ be a random geometric graph. Let $C_G$ denote the cover time of a simple random walk on G. Let $c>1$ be constant, and let $r=(c\log n/(\Upsilon_dn))^{1/d}$ . Then whp the cover time satisfies © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 324–349, 2011  相似文献   

17.
The circulant G = C(n,S), where , is the graph with vertex set Zn and edge set . It is shown that for n odd, every 6‐regular connected circulant C(n, S) is decomposable into Hamilton cycles. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

18.
Let be integers, , , and let for each , be a cycle or a tree on vertices. We prove that every graph G of order at least n with contains k vertex disjoint subgraphs , where , if is a tree, and is a cycle with chords incident with a common vertex, if is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009  相似文献   

19.
20.
A (g, f)‐factor of a graph is a subset F of E such that for all , . Lovasz gave a necessary and sufficient condition for the existence of a (g, f)‐factor. We extend, to the case of edge‐weighted graphs, a result of Kano and Saito who showed that if for any , then a (g, f)‐factor always exist. In addition, we use results of Anstee to provide new necessary and sufficient conditions for the existence of a (g, f)‐factor. © 2008 Wiley Periodicals, Inc. J Graph Theory 57: 265–274, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号