首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A simple bifunctional surface‐enhanced Raman scattering (SERS) assay based on primer self‐generation strand‐displacement polymerization (PS‐SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS‐SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal‐amplification tool. 3) The problem of high background induced by excess bio‐barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal‐output products and massive of hairpin DNA binding with SERS active bio‐barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic‐separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM , respectively.  相似文献   

3.
4.
An ultrasensitive surface enhanced Raman scattering (SERS) method has been designed to selectively and sensitively detect lysozyme. The gold chip as the detection substrate, the aptamer‐based target‐triggering cascade multiple cycle amplification, and gold nanoparticles (AuNPs) bio‐barcode Raman probe enhancement on the gold substrate are employed to enhance the SERS signals. The cascade amplification process consists of the nicking enzyme signaling amplification (NESA), the strand displacement amplification (SDA), and the circular‐hairpin‐assisted exponential amplification reaction (HA‐EXPAR). With the involvement of an aptamer‐based probe, two amplification reaction templates, and a Raman probe, the whole circle amplification process is triggered by the target recognition of lysozyme. The products of the upstream cycle (NESA) could act as the “DNA trigger” of the downstream cycle (SDA and circular HA‐EXPAR) to generate further signal amplification, resulting in the immobility of abundant AuNPs Raman probes on the gold substrate. “Hot spots” are produced between the Raman probe and the gold film, leading to significant SERS enhancement. This detection method exhibits excellent specificity and sensitivity towards lysozyme with a detection limit of 1.0×10?15 M . Moreover, the practical determination of lysozyme in human serum demonstrates the feasibility of this SERS approach in the analysis of a variety of biological specimens.  相似文献   

5.
The synthesis of two supramolecular diruthenium complexes, 1 ?CB[7] and 1 ?CB[8] (CB[n]=cucurbit[n]uril), which contain the respective host CB[7] and CB[8], were synthesized and isolated. In the case of host CB[8], the desired supramolecular complex was obtained by utilizing dihydroxynapthalene as a template during the synthesis. The 1H NMR spectra, electrochemistry, and photochemistry of these supramolecular complexes were performed in nonaqueous solution. The results show that both CB[7,8] hosts mainly bind to the linker part in solution in acetonitrile. This binding also lowers the oxidation potential of the ruthenium metal center and hinders the quenching effect by the viologen moiety. It has also been shown that external methylviologen can be included into 1 ?CB[8]. Analysis with NMR spectroscopy, electrochemistry, and photochemistry clearly shows a viologen radical dimer formation between the bound viologen and free methylviologen, thereby showing that the unique abilities of the CB[8] host can be utilized even in nonaqueous solution.  相似文献   

6.
7.
Tris(2,2′‐bipyridine)ruthenium(II) ([Ru(bpy)3]2+) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)3]2+‐containing microstructures based on electrostatic assembly. The formation of such microstructures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)3]Cl2 and K3[Fe(CN)6] at room temperature. The electrostatic interactions between [Ru(bpy)3]2+ cations and [Fe(CN)6]3? anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)3]2+‐containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid‐state ECL detection in capillary electrophoresis (CE) or CE microchips.  相似文献   

8.
9.
A new series of homoleptic metallodendrimers has been synthesized through ruthenium‐metal complexation by dendritically modified bathophenanthroline ligands. The presence of hydrophilic oligo(ethylene glycol) groups on the surface of the monodisperse metal complexes enabled the solubilization of all of the fractal species in a wide range of solvents, including water. The specific properties of all of these compounds have been systematically investigated by using photophysical techniques as a function of the generation number. Accordingly, the encapsulation of the highly luminescent [Ru(dpp)3]2+‐type (dpp=4,7‐diphenyl‐1,10‐phenanthroline) core unit within a dendritic microenvironment creates a powerful means to shield the center from dioxygen quenching. This shielding effect, as exerted on the phosphorescent ruthenium‐derived center, is reflected by enhanced emission intensities and extended excited‐state lifetimes that are close to the highest values reported so far, even in an air‐equilibrated aqueous medium. Interestingly, when inspecting the largest dendritic assembly, that is, the third‐generation assembly, significant drops in emission quantum yields and lifetimes are observed. This anomalous behavior has been attributed to the folding of the branches towards the luminescent core.  相似文献   

10.
11.
A new luminescence energy transfer (LET) system has been designed for the detection of thrombin in the near‐infrared (NIR) region by utilizing NIR‐to‐NIR upconversion lanthanide nanophosphors (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor. The use of upconverting NaYF4:Yb3+,Tm3+ nanoparticles with sharp NIR emission peaks upon NIR excitation by an inexpensive infrared continuous wave laser diode provided large spectral overlap between the donor and the acceptor. Both the Au NRs and carboxyl‐terminated NaYF4:Yb3+,Tm3+ UCNPs were first modified with different thrombin aptamers. When thrombin was added, a LET system was then formed because of the specific recognition between the thrombin aptamers and thrombin. The LET system was used to monitor thrombin concentrations in aqueous buffer and human blood samples. The limits of detection for thrombin are as low as 0.118 nM in buffer solution and 0.129 nM in human serum. The method was also successfully applied to thrombin detection in blood samples.  相似文献   

12.
张宝莲  洪伟  陆宝仪  李红 《电化学》2009,15(4):445-449
应用循环伏安法和微分脉冲伏安法研究了ITO电极上双十六烷基磷酸盐(DHP)和多壁碳纳米管(MWNTs)对[Ru(bpy)3]2+(bpy=2,2′-联吡啶)介导鸟嘌呤氧化的影响.结果表明,[Ru(bpy)3]2+能够介导鸟嘌呤氧化.在0.01至0.15 mmol.L-1DHP浓度范围内,[Ru(bpy)3]2+介导鸟嘌呤氧化峰电流随DHP浓度的增大而增大,阳离子表面活性剂HTAC则起抑制作用.讨论了DHP参与[Ru(bpy)3]2+介导鸟嘌呤氧化的可能电极过程机理.  相似文献   

13.
Modified 2′-deoxynucleoside triphosphates (dNTPs) bearing [Ru(bpy)3]2+ and [Os(bpy)3]2+ complexes attached via an acetylene linker to the 5-position of pyrimidines (C and U) or to the 7-position of 7-deazapurines (7-deaza-A and 7-deaza-G) have been prepared in one step by aqueous cross-couplings of halogenated dNTPs with the corresponding terminal acetylenes. Polymerase incorporation by primer extension using Vent (exo-) or Pwo polymerases gave DNA labeled in specific positions with Ru2+ or Os2+ complexes. Square-wave voltammetry could be efficiently used to detect these labeled nucleic acids by reversible oxidations of Ru2+/3+ or Os2+/3+. The redox potentials of the Ru2+ complexes (1.1–1.25 V) are very close to that of G oxidation (1.1 V), while the potentials of Os2+ complexes (0.75 V) are sufficiently different to enable their independent detection. On the other hand, Ru2+-labeled DNA can be independently analyzed by luminescence. In combination with previously reported dNTPs bearing ferrocene, aminophenyl, and nitrophenyl tags, the Os-labeled dATP has been successfully used for “multicolor” redox labeling of DNA and for DNA minisequencing.  相似文献   

14.
In the title complex, [Ru(bpy)(dppy)2(CO)2](PF6)2 (bpy = 2,2′‐bipyridine, dppy = 2‐(diphenylphosphino)pyridine), the ruthenium atom exhibits a slightly distorted octahedral coordination with the carbonyl ligands in cis positions. In addition, two dppy ligands coordinate to the ruthenium center through the phosphorus atoms in mutually trans positions and two pyridyl nitrogen atoms of the dppy direct toward two carbonyl ligands. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Photoinduced reactions of ruthenium complexes with molecular oxygen have attracted a lot of experimental attention; however, the reaction mechanism remains elusive. In this work, we have used the density functional theory method to scrutinize the visible‐light induced photooxidation mechanism of the ruthenium complex [Ru(II)‐(bpy)2(TMBiimH2)]2+ (bpy: 2, 2‐bipyridine and TMBiimH2: 4, 5, 4, 5‐tetramethyl‐2, 2‐biimidazole) initiated by the attack of molecular oxygen. The present computational results not only explain very well recent experiments, also provide new mechanistic insights. We found that: (1) the triplet energy transfer process between the triplet molecular oxygen and the metal‐ligand charge transfer triplet state of the ruthenium complex, which leads to singlet molecular oxygen, is thermodynamically favorable; (2) the singlet oxygen addition process to the S0 ruthenium complex is facile in energy; (3) the chemical transformation from endoperoxide to epidioxetane intermediates can be either two‐ or one‐step reaction (the latter is energetically favored). These findings contribute important mechanistic information to photooxidation reactions of ruthenium complexes with molecular oxygen. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
We report the synthesis of three new complexes related to the achiral [Ru(tpm)(dppz)py]2+ cation (tpm=tripyridazole methane, dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine, py=pyridine) that contain an additional single functional group on the monodentate ancillary pyridyl ligand. Computational calculations indicate that the coordinated pyridyl rings are in a fixed orientation parallel to the dppz axis, and that the electrostatic properties of the complexes are very similar. DNA binding studies on the new complexes reveal that the nature and positioning of the functional group has a profound effect on the binding mode and affinity of these complexes. To explore the molecular and structural basis of these effects, circular dichroism and NMR studies on [Ru(tpm)(dppz)py]Cl2 with the octanucleotides d(AGAGCTCT)2 and d(CGAGCTCG)2, were carried out. These studies demonstrate that the dppz ligand intercalates into the G2–A3 step, with {Ru(tpm)py} in the minor groove. They also reveal that the complex intercalates into the binding site in two possible orientations with the pyridyl ligand of the major conformer making close contact with terminal base pairs. We conclude that substitution at the 2‐ or 3‐position of the pyridine ring has little effect on binding, but that substitution at the 4‐position drastically disrupts intercalative binding, particularly with a 4‐amino substituent, because of steric and electronic interactions with the DNA. These results indicate that complexes derived from these systems have the potential to function as sequence‐specific light‐switch systems.  相似文献   

17.
18.
Controlling the emission of bright luminescent nanoparticles by a single molecular recognition event remains a challenge in the design of ultrasensitive probes for biomolecules. Herein, we developed 20‐nm light‐harvesting nanoantenna particles, built of a tailor‐made hydrophobic charged polymer poly(ethyl methacrylate‐co‐methacrylic acid), encapsulating circa 1000 strongly coupled and highly emissive rhodamine dyes with their bulky counterion. Being 87‐fold brighter than quantum dots QDots 605 in single‐particle microscopy (with 550‐nm excitation), these DNA‐functionalized nanoparticles exhibit over 50 % total FRET efficiency to a single hybridized FRET acceptor, a highly photostable dye (ATTO665), leading to circa 250‐fold signal amplification. The obtained FRET nanoprobes enable single‐molecule detection of short DNA and RNA sequences, encoding a cancer marker (survivin), and imaging single hybridization events by an epi‐fluorescence microscope with ultralow excitation irradiance close to that of ambient sunlight.  相似文献   

19.
近年来,钌多吡啶配合物与DNA的作用得到了比较广泛的研究,并且发展了一系列具有特定功能的钌配合物犤1犦。如传统的DNA分子光开关犤Ru(bpy)2dppz犦2+和犤Ru(phen)2dppz犦2+犤2,3犦(bpy=2,2'-联吡啶,phen=1,10-菲咯啉,dppz=二吡啶犤3,2-a:2',3'-c犦吩嗪)。这些配合物与DNA具有较强的结合力,在水溶液中几乎不发光,但在DNA存在下则有强烈荧光发出。这是由于配合物插入DNA的碱基对之后,保护了dppz的吡嗪环上的N原子,使其免受水分子的进攻从而导致配合物荧光的恢复。但是对于大多数的多吡啶钌配合物来讲,由于其自身较强的背景荧光或与DN…  相似文献   

20.
The bi‐exponential emission decay of [Ru(L)2dppz]2+ (L=N,N′‐diimine ligand) bound to DNA has been studied as a function of polynucleotide sequence, enantiomer, and nature of L (phenanthroline vs. bipyridine). The lifetimes (τi) and pre‐exponential factors (αi) depend on all three parameters. With [poly(dA‐dT)]2, the variation of αi with [Nu]/[Ru] has little dependence on L for Λ‐[Ru(L)2dppz]2+ but a substantial dependence for Δ‐[Ru(L)2dppz]2+. With [poly(dG‐dC)]2, by contrast, the Λ‐enantiomer αi values depend strongly on the nature of L, whereas those of the Δ‐enantiomer are relatively unaffected. DNA‐bound linked dimers show similar photophysical behaviour. The lifetimes are identified with two geometries of minor‐groove intercalated [Ru(L)2dppz]2+, resulting in differential water access to the phenazine nitrogen atoms. Interplay of cooperative and anti‐cooperative binding resulting from complex–complex and complex–DNA interactions is responsible for the observed variations of αi with binding ratio. [Ru(phen)2dppz]2+ emission is quenched by guanosine in DMF, which may further rationalise the shorter lifetimes observed with guanine‐rich DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号