首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achiral molecules can form aggregates with chirality. This depends on the relative position of the molecules, in other words, the tilt of the molecules (so‐called supramolecular tilt chirality). In this paper, we describe supramolecular chirality appearing in a 21 column composed of symmetrical benzene molecules, which is formed in the host cavity of inclusion crystals of cholic acid. Moreover, we determined the handedness, that is, right or left, of the 21 helical column of benzene on the basis of the molecular tilt. Determination of the 21 helical handedness was performed on assemblies of other benzene derivatives in cholic acid crystals and benzene assemblies in other host frameworks selected from the Cambridge Structural Database. Finally, we demonstrated complementarity of the handedness between the 21 symmetrical host framework of cholic acid and the benzene column.  相似文献   

2.
A peptidomimetic compound undergoes a reversible single‐crystal‐to‐single‐crystal transformation upon guest release/uptake with the transformation involving a drastic conformational change. The extensive and reversible alteration in the solid state is connected to the formation of an unprecedented “CH–π zipper” which can reversibly open and close (through the formation of CH–π interactions), thus allowing for guest sensing.  相似文献   

3.
4.
The solid‐state chiral optical properties (circular dichroism and circularly polarized luminescence) of a 2‐naphthalenecarboxylic acid/amine supramolecular organic fluorophore can be controlled by changing the aryl unit of the chiral 1‐arylethylamine component of the molecule rather than altering the chirality of the 1‐arylethylamine itself.  相似文献   

5.
6.
The self‐assembly of higher‐order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self‐assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors. Eight strong iodine???iodide halogen bonds and numerous buried π‐surfaces endow the triplex with remarkable stability, even at elevated temperatures. We suggest that the natural rise of a single‐strand helix renders its linear halogen‐bond donors non‐convergent. Thus, the stringent linearity of halogen bonding is a powerful tool for the synthesis of multi‐strand anion helicates.  相似文献   

7.
8.
Water seeds : Complex stoichiometry/composition and degree of oligomerization (oligomeric supramolecular complex formation) of cucurbit[6]uril (CB[6]) with N‐alkyl‐ and N,N′‐dialkylpiperazine were investigated in aqueous solutions by means of isothermal titration calorimetry (ITC), ESI‐MS, NMR and light scattering measurements.

  相似文献   


9.
Two bowl‐shaped cavities , each having three OH? hydrogen‐bond donors at its base, are present in double‐cone‐shaped metallacrown anion host [Co6(μ‐OH)6(μ‐L)6]m+ ( 1 m + ; HL=3{5}‐(pyrid‐2‐yl)‐5{3}‐(tert‐butyl)pyrazole). Depending on its affinity for the anions present, it can be isolated in its CoIII3CoII3 (m=3; e.g., 1 (ClO4)3) and CoIII2CoII4 (m=2; e.g., 1 (BF4)2 ? n H2O) oxidation states. See picture for photographs of isolated salts.

  相似文献   


10.
γ‐Hydroxybutyric acid (GHB), a colourless, odourless and tasteless chemical, has become one of the most dangerous illicit drugs of abuse today. At low doses, this drug is a central nervous system depressant that reduces anxiety and produces euphoria and relaxation, sedating the recipient. There is an urgent need for simple, easy‐to‐use sensors for GHB in solution. Here, we present a colorimetric sensor array based on supramolecular host–guest complexes of fluorescent dyes with organic capsules (cucurbiturils) for the detection of GHB.  相似文献   

11.
A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross‐linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self‐assembly of metal–ligand coordination and host–guest interaction. UV/Vis spectroscopy, 1H NMR spectroscopy, viscosity and dynamic light‐scattering techniques were employed to characterize and understand the cross‐linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well‐defined morphology of the self‐assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure.  相似文献   

12.
13.
14.
Two‐dimensional NOESY 1H NMR, isothermal titration calorimetric (ITC), and rheological studies of host–guest complexation by β‐cyclodextrin, β‐CD, and the β‐CD groups of the linked β‐CD dimers, β‐CD2ur and β‐CD2su and trimers, β‐CD3bz and β‐CDen3bz, of the dodecyl, C12, substituents of the 3.0% substituted poly(acrylate), PAAC12, in aqueous solution are reported. Complexations by β‐CD, β‐CD2ur, β‐CD2su, β‐CD3bz, and β‐CDen3bz of the C12 substituents of PAAC12 in 0.2 wt % solution exhibit complexation constants 10?4K11 (298.2 K) = 0.83, 5.80, 4.40, 15.0, and 1.50 dm3 mol?1, respectively. (The corresponding ΔH11 and TΔS11 show a linear relationship.) The rheologically determined zero‐shear viscosities of 3.3 wt % aqueous solutions of PAAC12 alone and in the presence of β‐CD, β‐CD2ur, β‐CD2su, β‐CD3bz, and β‐CDen3bz (where the β‐CD groups and C12 substituents are equimolar) are 0.016, 0.03, 0.12, 0.25, 0.12, and 0.08 Pa s (298.2 K), respectively, and show PAAC12 to form interstrand cross‐links through complexation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1278–1286  相似文献   

15.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

16.
17.
Benzene, toluene, ethylbenzene, the isomers of xylene, and trimethylbenzene are harmful volatile organic compounds and pose risks to human health and the environment. However, there are currently no effective chemosensors for vapors of these compounds. A porous supramolecular host for turn‐on fluorogenic and chromogenic detection of the vapors of small aromatic hydrocarbons is presented. The host was constructed from a naphthalenediimide derivative that was supramolecularly connected to tris(pentafluorophenyl)borane. The amorphous powder form of the host allowed for effective accommodation of vapors of small aromatic hydrocarbons, resulting in a guest‐dependent fluorescence emission. Increases in the fluorescence yield of 76‐, 46‐, and 37‐fold were observed with toluene, benzene, and m‐xylene, respectively. Negligible responses were obtained with common organic solvents. This simple supramolecular host could be applied as a useful sensor of small aromatic hydrocarbon vapors.  相似文献   

18.
Solvothermal reaction of Zn(NO3)2 ? 4 H2O, 1,4‐bis[2‐(4‐pyridyl)ethenyl]benzene (bpeb) and 4,4′‐oxybisbenzoic acid (H2obc) in the presence of dimethylacetamide (DMA) as one of the solvents yielded a threefold interpenetrated pillared‐layer porous coordination polymer with pcu topology, [Zn2(bpeb)(obc)2] ? 5 H2O ( 1 ), which comprised an unusual isomer of the well‐known paddle‐wheel building block and the transtranstrans isomer of the bpeb pillar ligand. When dimethylformamide (DMF) was used instead of DMA, a supramolecular isomer [Zn2(bpeb)(obc)2] ? 2 DMF ? H2O ( 2 ), with the transcistrans isomer of the bpeb ligand with a slightly different variation of the paddle‐wheel repeating unit, was isolated. In MeOH, single crystals of 2 were transformed by solvent exchange in a single‐crystal‐to‐single‐crystal (SCSC) manner to yield [Zn2(bpeb)(obc)2] ? 2 H2O ( 3 ), which is a polymorph of 1 . SCSC conversion of 3 to 2 was achieved by soaking 3 in DMF. Compounds 1 and 2 as well as 2 and 3 are supramolecular isomers.  相似文献   

19.
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8‐bis(4‐aminophenyl)anthracene (1,8‐BAPA) with organic solvents. X‐ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8‐BAPA and eight guest molecules including both non‐polar (benzene) and polar guests (N,N‐dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature‐dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号