首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

2.
The competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solutions by the copolymer of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and itaconic acid (IA), P(AMPS‐co‐IA), was investigated. Homopolymer of AMPS (PAMPS) was also used to remove these ions from their aqueous solution. In the preparation of AMPS–IA copolymer, the molar percentages of AMPS and IA were 80 and 20, respectively. In order to observe the changes in the structures of polymers due to metal adsorption, FTIR spectra by attenuated total reflectancetechnique and scanning electron microscopy (SEM) pictures of the polymers were taken both before and after adsorption experiments. Total metal ion removal capacities of PAMPS and P(AMPS‐co‐IA) were 1.685 and 1.722 mmol Me2+/gpolymer, respectively. Experimental data were evaluated to determine the kinetic characteristics of the adsorption process. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions onto both PAMPS and P(AMPS‐co‐IA) was found to fit pseudo‐second‐order type kinetics. In addition, the removal orders in the competitive adsorption of these metal ions onto PAMPS and P(AMPS‐co‐IA) were found to be Cd2+ > Pb2+ > Cu2+ and Pb2+ > Cd2+ > Cu2+, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

4.
A new blue emitting 2‐allyl‐6‐(2‐dimethylaminoethyloxy)‐benzo[de]isoquinoline‐1,3‐dione, bearing an allylic group has been designed and synthesized. Bulk radical copolymerization has been carried out in order to prepare a fluorescent copolymer, based on styrene. The main photophysical characteristics of the monomeric and polymeric fluorophores have been investigated both in the absence and presence of metal cations and protons. It has been found that the monomeric naphthalimide can be used as a sensor for protons and Zn2+, Ni2+, Ce3+, Cu2+, Co2+, Ag+ cations. The polymeric fluorophore has been shown to be a selective chemosensor for Cu2+ cations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The intrinsic binding ability of 7 natural peptides (oxytocin, arg8‐vasopressin, bradykinin, angiotensin‐I, substance‐P, somatostatin, and neurotensin) with copper in 2 different oxidation states (CuI/II) derived from different Cu+/2+ precursor sources have been investigated for their charge‐dependent binding characteristics. The peptide‐CuI/II complexes, [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII], are prepared/generated by the reaction of peptides with CuI solution/Cu‐target and CuSO4 solution and are analyzed by using matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry. The MALDI mass spectra of both [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII] complexes show no mass shift due to the loss of ─H atoms in the main chain ─NH of these peptides by Cu+ and Cu2+ deprotonation. The measured m/z value indicates the reduction of CuI/II oxidation state into Cu0 during MALDI processes. The number and relative abundance of Cu+ bound to the peptides are greater compared with the Cu2+ bound peptides. Oxytocin, arg8‐vasopressin, bradykinin, substance‐P, and somatostatin show the binding of 5Cu+, and angiotensin‐I and neurotensin show the binding of 7Cu+ from both CuI and Cu targets, while bradykinin shows the binding of 2Cu2+, oxytocin, arg8‐vasopressin, angiotensin‐I, and substance‐P; somatostatin shows the binding of 3Cu2+; and neurotensin shows 4Cu2+ binding. The binding of more Cu+ with these small peptides signifies that the bonding characteristics of both Cu+ and Cu2+ are different. The amino acid residues responsible for the binding of both Cu+ and Cu2+ in these peptides have been identified based on the density functional theory computed binding energy values of Cu+ and the fragment transformation method predicted binding preference of Cu2+ for individual amino acids.  相似文献   

6.
All 5,5′‐hydrazinebistetrazoles reported in the literature are sensitive to oxidation and react with atmospheric oxygen to yield the corresponding 5,5′‐azobistetrazolates on time. Herewith, we report on the synthesis of the free acid 5,5′‐hydrazinebistetrazole (HBT) which showed to be stable on air for extended periods of time. The compound was fully characterized by analytical and spectroscopic methods and its X‐ray structure was determined by diffraction techniques. Besides, we determined its explosive properties by BAM methods and calculated its heat of formation (+414 kJ mol?1), detonation velocity (8523 m s?1) and detonation pressure (27.7 GPa). HBT proved to be very safe to handle (impact sensitivity: >30 J, friction sensitivity: ~108 N) and was used as a starting material for the synthesis of some already reported 5,5′‐azobistetrazolates: NH4+, NH2NH3+, Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+ and Ba2+.  相似文献   

7.
《Electroanalysis》2005,17(4):327-333
Conducting polymers (CP) remain a promising material to construct stable potential all‐solid‐state ion‐selective potentiometric electrodes. The unique properties of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonate) ions, PEDOT‐PSS: high CP stability and affinity of doping anions towards Cu2+ ions, make it highly attractive for construction of all‐solid‐state copper(II)‐selective electrodes with outstanding selectivity. The additional benefits can arise from solution processability of commercially available PEDOT‐PSS system. This material was highly promising for a new sensor arrangement, i.e. to obtain disposable, planar and flexible all‐plastic Cu2+‐selective electrodes. These sensors can be obtained by casting a commercially available dispersion of PEDOT‐PSS (Baytron P) on a plastic, non‐conducting support material. The CP being both electrical lead and ion‐to‐electron transducer, was covered with plastic, solvent polymeric Cu2+ selective membrane. This extremely simple arrangement, after conditioning in dilute Cu2+ solution, was characterized with linear Nernstian responses within the activities range from: 0.1 to 10?4 M, followed by super‐Nernstian responses for lower activities. The latter result points to effective elimination of primary ions leakage from the plastic membrane / transducer phase and has resulted in significantly improved selectivities. Obtained log K values were equal to ?7.6 for Co2+, ?7.4 for Zn2+, ?7.2 for Ca2+ and ?6.8 for Na+, respectively.  相似文献   

8.
A chloroform membrane system containing dibenzodiaza‐15‐crown‐4 was found to be a highly efficient and selective transport of Ag+ ions through a chloroform liquid membrane. In the presence of thiosulfate ion as a suitable ion stripping agent in the receiving phase, the amount of silver transported across the liquid membrane after 105 minis 95 ± 1.3%. The selectivity of Ag+transport from aqueous solutions containing Tl+, Pb2+, Cd2+, Ni2+, Co2+, K+, Ca2+, Sr2+, Hg2+, Zn2+, Cu2+was investigated. The interfering effect of Cu2+ ions was drastically diminished in the presence of EDTA as a proper masking agent in the source phase.  相似文献   

9.
A practical, two‐step synthesis of novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 has been reported. The strategy employed for the synthesis of the desired molecules involved Duff formylation of benzo‐15‐crown‐5 to get 4‐formyl benzo‐15‐crown‐5 followed by subsequent reactions with substituted indoles in trifluoroacetic acid to yield novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 in moderate to good yield. One of the reported novel molecule tested for the complexation behavior with various metal cations, such as Li+, Na+, K+, Mg2+ Ca2+, Al3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Ba2+, Hg2+, and Pb2+, showed a visual colorimetric probe for the detection of mercury cations (Hg2+) in an aqueous medium.  相似文献   

10.
8‐Hydroxyquinolium chloroacetate ( L1 ) was synthesized and characterized. The results suggest that L1 loses ethyl chloroacetate ion on coordination at low pH (2–5) and consequently it behaves as 8‐hydoxyquinoline ( L2 ). Cu2+, Co2+, Pt4+, Pd2+, Au3+, Ag+ and Nd3+ complexes derived from L2 have been synthesized and characterized using spectral, magnetic and thermal measurements. L2 acts as a neutral bidentate ligand in the case of Cu2+, Co2+, Pt4+, Pd2+ and Nd3+ complexes and as a mononegative bidentate ligand in the case of Au3+ and Ag+ complexes. Octahedral geometry is proposed for Cu2+, Co2+ (grey) and Pt4+ complexes and square‐planar for Co2+ (green), Pd2+ and Au3+ complexes. The bond lengths, bond angles, chemical reactivities, binding energies and dipole moments for all compounds were evaluated using density functional theory and molecular electrostatic potential for L1 . Superoxide dismutase radical scavenger‐like activity and cytotoxic activity of the complexes towards HepG2 liver cancer cells has been screened. Cytotoxicity measurements show that Ag+ and Pd2+ complexes have the highest cytotoxic activity while L1 , Cu2+, Co2+ (grey), Co2+ (green), Pt4+ and Nd3+ complexes have no cytotoxic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Highly selective all solid state electrochemical sensor based on a synthesized compound i.e. 2‐(1‐(2‐((3‐(2‐hydroxyphenyl)‐1H‐pyrozol‐1‐yl)methyl)benzyl)‐1H‐pyrazol‐3‐yl)phenol (I) as an ionophore has been prepared and investigated for the selective quantification of chromium(III) ions. The effect of various plasticizers, viz. dibutyl phosphonate (DBP), dibutyl(butyl) phosphonate (DBBP), nitrophenyl octyl ether (NPOE), tris‐(2‐ethylhexyl)phosphonate (TEP), tri‐butyl phosphonate (TBP), dioctyl phthalate (DOP), dioctyl sebacate (DOS), benzyl acetate (BA) and acetophenone (AP) along with anion excluders NaTPB (sodium tetraphenyl borate) and KClTPB (potassium(tetrakis‐4‐chlorophenyl)borate was also studied. The optimum composition of the best performing membrane contained (I):KClTPB:NPOE:PVC in the ratio 15 : 3 : 40 : 42 w/w. The sensor exhibited near Nernstian slope of 20.1±0.2 mV/decade of activity in the working concentration range of 1.2×10?7–1.0×10?1 M, and in a pH range of 3.8–4.5. The sensor exhibited a fast response time of 10 s and could be used for about 5 months without any considerable divergence in potentials. The proposed sensor showed very good selectivity over most of the common cations including Na+, Li+, K+, Cu2+, Sr2+, Ni2+, Co2+, Ba2+, Hg2+, Pb2+, Zn2+, Cs+, Mg2+, Cd2+, Al3+, Fe3+and La3+. The activity of Cr(III) ions was successfully determined in the industrial waste samples by using this sensor.  相似文献   

12.
《中国化学》2017,35(8):1311-1316
Specific recognition of ultratrace levels of ions in semi‐water using super‐quicker methods is still a challenge for environmental monitoring. Herein we report a fluorescent and colormetric sensor ( ZH ) based on supramolecular self‐assembly, whose structure was destroyed by the addition of ultratrace of silver ions. The process promoted either naked eye visible color changes or fluorescence intensity quenched in conjunction with a wide pH range. Systematic studies revealed very high selectivity (0.07 µmol/L) for silver ions, and other common cations, e.g ., Hg2+, Cu2+, Cd2+, Pb2+ had nearly no influence on the sensing behavior. This sensor also served as a multiple use of component in sensing materials by addition of I into the mixture of ZH and Ag+ (about 5 times). What's more, ZH containing filter paper emerged distinct color and fluorescence changes upon exposure to silver (Ag+), which could be used as a portable method to undertake field testing for Ag + .  相似文献   

13.
A chloroform membrane system containing a given mixture of dibenzyldiaza‐18‐crown‐6 and palmetic acid was applied for transport of Pb2+ ions. The transport was capable of moving metal ions “uphill”. Thus, it was possible to follow the transfer of Pb(II) from the aqueous source phase to the organic layer and from the organic layer to the receiving phase. The effects of thiosulfate concentration in the receiving phase, palmetic acid and dibenzyldiaza‐18‐crown‐6 concentration in the organic phase on the efficiency of the transport system were examined. By using S2O32? ion as metal ion acceptor in the receiving phase, the amount of lead ion transport across the liquid membrane after 150 minutes is 96 ± 1.5%. The selectivity and efficiency of lead transport from aqueous solution containing Cu2+, Tl+, Ag+, Co2+, Ni2+, Mg2+, Zn2+, Hg2+, Cd2+, Ca2+ were investigated. In the presence of thiosulfate as a suitable masking agent in the source phase, the interfering effects of Ag+ and Cu2+ were diminished drastically.  相似文献   

14.
A new ratiometric fluorescent sensor ( 1 ) for Cu2+ based on 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) with di(2‐picolyl)amine (DPA) as ion recognition subunit has been synthesized and investigated in this work. The binding abilities of 1 towards different metal ions such as alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+) and other metal ions ( Ba2+, Zn2+, Cd2+, Fe2+, Fe3+, Pb2+, Ni2+, Co2+, Hg2+, Ag+) have been examined by UV‐vis and fluorescence spectroscopies. 1 displays high selectivity for Cu2+ among all test metal ions and a ~10‐fold fluorescence enhancement in I582/I558 upon excitation at visible excitation wavelength. The binding mode of 1 and Cu2+ is a 1:1 stoichiometry determined via studies of Job plot, the nonlinear fitting of the fluorometric titration and ESI mass.  相似文献   

15.
A simple and nontoxic fluorescent chemosensor of di‐O‐methyl curcumin has been prepared from curcumin. The sensor exhibited selective and sensitive fluorescent responses toward Al3+ over a wide range of metal ions, such as Mn2+, Ce3+, Pt2+, Sn4+, Hg+, Sb3+, K+, Ca2+, Mg2+, Ba2+, Cu2+, Ni2+, Na+, NH4+, Ag+, Pb2+, Zn2+, Fe2+, Fe3+, Hg2+ and Cr3+ in ethanol/water. The free ligand showed quite weak fluorescence emission due to the isomerization of C?O double bond in the excited state, however, after addition of Al3+, fluorescence emission results in a prominent fluorescence enhancement.  相似文献   

16.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

17.
A monometallic (Cu2+, 1) and a bimetallic (Cu2+ Nd3+, 2) Salen‐type Schiff‐base complexes with different reactive species, could efficiently catalyze the bulk solvent‐free melt ring‐opening polymerization (ROP) of L ‐lactide. Especially for the bimetallic complex 2, the involvement of rare earth ion was important and influential to the catalytic behaviors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A new dinuclear RuII polypyridyl complex, [(bpy)2Ru(H2bpip)Ru(bpy)2]4+ ( RuH2bpip , bpy=2,2‐bipyridine, H2bpip=2,6‐pyridyl(imidazo[4,5‐f][1,10]phenanthroline), was developed to act as a one‐ and two‐photon luminescent probe for biological Cu2+ detection. This RuII complex shows a significant two‐photon absorption cross section (400 GM) and displays a remarkable one‐ and two‐photon luminescence switch in the presence of Cu2+ ions. Importantly, RuH2bpip can selectively recognise Cu2+ in aqueous media in the presence of other abundant cellular cations (such as Na+, K+, Mg2+, and Ca2+), trace metal ions in organisms (such as Zn2+, Ag+, Fe3+, Fe2+, Ni2+, Mn2+, and Co2+), prevalent toxic metal ions in the environment (such as Cd2+, Hg2+, and Cr3+), and amino acids, with high sensitivity (detection limit≤3.33×10?8 M ) and a rapid response time (≤15 s). The biological applications of RuH2bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2bpip was, therefore, employed as a sensing probe for the detection of Cu2+ in living cells and zebrafish.  相似文献   

19.
The simple PVC‐based membrane containing N,N′,N″,N′′′‐tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane (tpmc) as an ionophore and dibutyl phthalate as a plasticizer, directly coated on a glassy carbon electrode was examined as a new sensor for Cu2+ ions. The potential response was linear within the concentration range of 1.0×10?1–1.0×10?6 M with a Nernstian slope of 28.8 mV/decade and detection limit of 7.0×10?7 M. The electrode was used in aqueous solutions over a wide pH range (1.3–6). The sensor exhibited excellent selectivity for Cu2+ ion over a number of cations and was successfully used in its determination in real samples.  相似文献   

20.
Rigid N‐(substituted)‐2‐aza‐[3]‐ferrocenophanes L1 and L2 were easily synthesized from 1,1 ‐dicarboxyaldehydeferrocene and the corresponding amines. Ligands L1 and L2 were characterized by 1H NMR, 13C NMR and single‐crystal X‐ray crystallography. The coordination abilities of L1 and L2 with metal ions such as Cu2+, Mg2+, Ni2+, Zn2+, Pb2+ and Cd2+ were evaluated by cyclic voltammetry. The electrochemical shift (ΔE1/2) of 125 mV was observed in the presence of Cu2+ ion, while no significant shift of the Fc/Fc + couple was observed when Mg2+, Ni2+, Zn2+, Pb2+, Cd2+ metal ions were added to the solution of L1 in the mixture of MeOH and H2O. Moreover, the extent of the anodic shift of redox potentials was approximately equal to that induced by Cu2+ alone when a mixture of Cu2+, Mg2+, Ni2+, Zn2+, Pb2+ and Cd2+ was added to a solution of L1. Ligand L1 was proved to selectively sense Cu2+ in the presence of large, excessive first‐row transition and late‐transition metal cations. The coordination model was proposed from the results of controlled experiments and quantum calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号