首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The size of large minimal blocking sets is bounded by the Bruen–Thas upper bound. The bound is sharp when q is a square. Here the bound is improved if q is a non‐square. On the other hand, we present some constructions of reasonably large minimal blocking sets in planes of non‐prime order. The construction can be regarded as a generalization of Buekenhout's construction of unitals. For example, if q is a cube, then our construction gives minimal blocking sets of size q4/3 + 1 or q4/3 + 2. Density results for the spectrum of minimal blocking sets in Galois planes of non‐prime order is also presented. The most attractive case is when q is a square, where we show that there is a minimal blocking set for any size from the interval . © 2004 Wiley Periodicals, Inc. J Combin Designs 13: 25–41, 2005.  相似文献   

2.
We investigate the upper chromatic number of the hypergraph formed by the points and the k ‐dimensional subspaces of PG ( n , q ) ; that is, the most number of colors that can be used to color the points so that every k ‐subspace contains at least two points of the same color. Clearly, if one colors the points of a double blocking set with the same color, the rest of the points may get mutually distinct colors. This gives a trivial lower bound, and we prove that it is sharp in many cases. Due to this relation with double blocking sets, we also prove that for t 3 8 p + 1 , a small t ‐fold (weighted) ( n ? k ) ‐blocking set of PG ( n , p ) , p prime, must contain the weighted sum of t not necessarily distinct ( n ? k ) ‐spaces.  相似文献   

3.
Bruen and Thas proved that the size of a large minimal blocking set is bounded by . Hence, if q = 8, then the maximal possible size is 23. Since 8 is not a square, it was conjectured that a minimal blocking 23‐set does not exist in PG(2,8). We show that this is not the case, and construct such a set. We prove that this is combinatorially unique. We also complete the spectrum problem of minimal blocking sets for PG(2,8) by showing a minimal blocking 22‐set. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 162–169, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10035  相似文献   

4.
A scattered subspace of PG(n-1,q) with respect to a (t-1)-spread S is a subspace intersecting every spread element in at most a point. Upper and lower bounds for the dimension of a maximum scattered space are given. In the case of a normal spread new classes of two intersection sets with respect to hyperplanes in a projective space are obtained using scattered spaces.  相似文献   

5.
This article discusses minimal s-fold blocking sets B in PG (n, q), q = ph, p prime, q > 661, n > 3, of size |B| > sq + c p q 2/3 - (s - 1) (s - 2)/2 (s > min (c p q 1/6, q 1/4/2)). It is shown that these s-fold blocking sets contain the disjoint union of a collection of s lines and/or Baer subplanes. To obtain these results, we extend results of Blokhuis–Storme–Szönyi on s-fold blocking sets in PG(2, q) to s-fold blocking sets having points to which a multiplicity is given. Then the results in PG(n, q), n 3, are obtained using projection arguments. The results of this article also improve results of Hamada and Helleseth on codes meeting the Griesmer bound.  相似文献   

6.
7.
We prove that PG(2, 8) does not contain minimal blocking sets of size 14. Using this result we prove that 58 is the largest size for a maximal partial spread of PG(3, 8). This supports the conjecture that q 2q+ 2 is the largest size for a maximal partial spread of PG(3, q), q>7.  相似文献   

8.
In this paper we examine whether the number of pairwise non-isomorphic minimal blocking sets in PG(2, q) of a certain size is larger than polynomial. Our main result is that there are more than polynomial pairwise non-isomorphic minimal blocking sets for any size in the intervals [2q−1, 3q−4] for q odd and for q square. We can also prove a similar result for certain values of the intervals and .   相似文献   

9.
Let S be a blocking set in an inversive plane of order q. It was shown by Bruen and Rothschild 1 that |S| ≥ 2q for q ≥ 9. We prove that if q is sufficiently large, C is a fixed natural number and |S = 2q + C, then roughly 2/3 of the circles of the plane meet S in one point and 1/3 of the circles of the plane meet S in four points. The complete classification of minimal blocking sets in inversive planes of order q ≤ 5 and the sizes of some examples of minimal blocking sets in planes of order q ≤ 37 are given. Geometric properties of some of these blocking sets are also studied. © 2004 Wiley Periodicals, Inc.  相似文献   

10.
11.
Let Ω and be a subset of Σ = PG(2n−1,q) and a subset of PG(2n,q) respectively, with Σ ⊂ PG(2n,q) and . Denote by K the cone of vertex Ω and base and consider the point set B defined by
in the André, Bruck-Bose representation of PG(2,qn) in PG(2n,q) associated to a regular spread of PG(2n−1,q). We are interested in finding conditions on and Ω in order to force the set B to be a minimal blocking set in PG(2,qn) . Our interest is motivated by the following observation. Assume a Property α of the pair (Ω, ) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, ) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of PG(2n−1,q) and a blocking set in a subspace of PG(2n,q); both in a mutually suitable position. We achieve, in this way, new classes and new sizes of minimal blocking sets in PG(2,qn), generalizing the main constructions of [14]. For example, for q = 3h, we get large blocking sets of size qn + 2 + 1 (n≥ 5) and of size greater than qn+2 + qn−6 (n≥ 6). As an application, a characterization of Buekenhout-Metz unitals in PG(2,q2k) is also given.  相似文献   

12.
In a previous paper 1 , all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic , have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to . © 2004 Wiley Periodicals, Inc.  相似文献   

13.
14.
Minimal blocking sets in PG(2,q2) have size at most q3+1. This result is due to Bruen and Thas and the bound is sharp, sets attaining this bound are called unitals. In this paper, we show that the second largest minimal blocking sets have size at most q3+1(p3)/2, if q=p, p67, or q=ph, p>7, h>1. Our proof also works for sets having at least one tangent at each of its points (that is, for tangency sets).  相似文献   

15.
This article first of all discusses the problem of the cardinality of maximal partial spreads in PG(3,q), q square, q>4. Let r be an integer such that 2rq+1 and such that every blocking set of PG(2,q) with at most q+r points contains a Baer subplane. If S is a maximal partial spread of PG(3,q) with q 2-1-r lines, then r=s( +1) for an integer s2 and the set of points of PG(3,q) not covered byS is the disjoint union of s Baer subgeometriesPG(3, ). We also discuss maximal partial spreads in PG(3,p 3), p=p 0 h , p 0 prime, p 0 5, h 1, p 5. We show that if p is non-square, then the minimal possible deficiency of such a spread is equal to p 2+p+1, and that if such a maximal partial spread exists, then the set of points of PG(3,p 3) not covered by the lines of the spread is a projected subgeometryPG(5,p) in PG(3,p 3). In PG(3,p 3),p square, for maximal partial spreads of deficiency p 2+p+1, the combined results from the preceding two cases occur. In the final section, we discuss t-spreads in PG(2t+1,q), q square or q a non-square cube power. In the former case, we show that for small deficiencies , the set of holes is a disjoint union of subgeometries PG(2t+1, ), which implies that 0 (mod +1) and, when (2t+1)( -1) <q-1, that 2( +1). In the latter case, the set of holes is the disjoint union of projected subgeometries PG(3t+2, ) and this implies 0 (mod q 2/3+q 1/3+1). A more general result is also presented.  相似文献   

16.
This article investigates cyclic completek-caps in PG(3,q). Namely, the different types of completek-capsK in PG(3,q) stabilized by a cyclic projective groupG of orderk, acting regularly on the points ofK, are determined. We show that in PG(3,q),q even, the elliptic quadric is the only cyclic completek-cap. Forq odd, it is shown that besides the elliptic quadric, there also exist cyclick-caps containingk/2 points of two disjoint elliptic quadrics or two disjoint hyperbolic quadrics and that there exist cyclick-caps stabilized by a transitive cyclic groupG fixing precisely one point and one plane of PG(3,q). Concrete examples of such caps, found using AXIOM and CAYLEY, are presented.  相似文献   

17.
The main result of this paper is that point sets of PG(n, q 3), q = p h , p ≥ 7 prime, of size less than 3(q 3(n?k) + 1)/2 intersecting each k-space in 1 modulo q points (these are always small minimal blocking sets with respect to k-spaces) are linear blocking sets. As a consequence, we get that minimal blocking sets of PG(n, p 3), p ≥ 7 prime, of size less than 3(p 3(n?k) + 1)/2 with respect to k-spaces are linear. We also give a classification of small linear blocking sets of PG(n, q 3) which meet every (n ? 2)-space in 1 modulo q points.  相似文献   

18.
19.
Denote by PG(2,q) the finite desarguesian projective plane of order q, where q=ph, p a prime, q>2. We define the function m(q) as follows: m(q)=q, if q is a square; m(q)=(q+1)/2, if q is a prime; m(q)=ph–d, if q=ph with h an odd integer, where d denotes the greatest divisor of h different from h. The following theorem is proved: For any integer k with q+m(q)+1 k q2–m(q), there exists a blocking set in PG(2,q) having exactly k elements.To Professor Adriano Barlotti on his 60th birthday.Research partially supported by G.N.S.A.G.A. (CNR)  相似文献   

20.
In this paper we show that a small minimalblocking set in PG(2,p3), with p 7,is of Rédei type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号