首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lycodine‐type alkaloids have gained significant interest owing to their unique skeletal characteristics and acetylcholinesterase activity. This study established a rapid and reliable method using ultra‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐ESI‐Q/TOF‐MS/MS) for comprehensive characterization of lycodine‐type alkaloids for the first time. The lycodine‐type alkaloids were detected successfully from Lycopodiastrum casuarinoides, Huperzia serrata and Phlegmarirus carinatus in seven plants of the Lycopodiaceae and Huperziaceae families, based on the established characteristic MS fragmentation of five known alkaloids. Furthermore, a total of 13 lycodine‐type alkaloids were identified, of which three pairs of isomers were structurally characterized and differentiated. This study further improves mass analysis of lycodine‐type alkaloids and demonstrates the superiority of UPLC with a high‐resolution mass spectrometer for the rapid and sensitive structural elucidation of other trace active compounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This study aims to qualitatively analyze protoberberine alkaloids in crude extract of Coptidis Rhizoma using HPLC with ESI‐MS/MS. Possible specific molecular weights of protoberberine alkaloids were firstly deduced according to literatures and were adopted to screen the alkaloids in the HPLC with ESI‐MS of crude extract of Coptidis Rhizoma. As a result, 21 protoberberine alkaloids were found, including compounds of very low concentration and compounds coeluted in one peak. Among these, two compounds were positively identified and verified by comparison with standards. Ten of these compounds were first reported in this study for Coptidis Rhizoma. In addition, chromatographic retention parameters a and c of all compounds were obtained using their retention times under five gradient conditions and were applied to confirm the deduction about the structures of protoberberine alkaloids by tandem mass data.  相似文献   

3.
Picrasma quassioides (D. Don) Benn. is a widely used traditional Chinese medicine for anti‐inflammation and antibiosis. Canthinone and β‐carboline alkaloids are the main characteristic constituents that possess diverse pharmacological effects, such as anti‐inflammatory and anti‐infectious properties. In this study, bioautography in thin‐layer chromatography indicated that the antiradical activity compound may be alkaloids. Then, a simple, fast, and efficient method was established for the separation and purification of two types of alkaloids from P. quassioides by mass‐spectrometry‐directed autopurification system. Eight alkaloids were isolated and purified in this one‐step methodology. Among them, five compounds ( 3 , 95.1%, 58.8 mg; 4 , 98.4%, 71.7 mg; 6 , 97.8%, 365.4 mg; 7 , 97.7%, 172.7 mg; 8 , 98.2%, 180.3 mg) were obtained in large amounts with extremely high purities. Then, the antiradical activities of the isolates showed that 4‐methoxy‐5‐hydroxycanthin‐6‐one ( 6 ) exhibited obvious 1,1‐diphenyl‐2‐picryl‐hydrazyl free radical scavenging activity with an IC50 value of 84.037 μM. This study offers a new method for the preparation of targeted bioactive alkaloids in P. quassioides. This work also provides a reference for the separation of other targeted chemical components with potential activities from traditional Chinese herbal medicines.  相似文献   

4.
An efficient and refined method for the separation of six aconitine‐type alkaloids from the alkaline prepared “Kusnezoff monkshood root” was established. It is the first study that two new lipo‐alkaloids were successfully isolated from refined sample by pH‐zone‐refining counter‐current chromatography rather than synthetic method. It was of interest that a great deal of lipo‐alkaloids was produced in crude extract from the alkalization of “Kusnezoff monkshood root.” A refined sample method was proposed to enrich two types of alkaloids by liquid–liquid extraction, i.e. lipo‐alkaloids and monoester‐diterpenoid alkaloids. The pH‐zone‐refining counter‐current chromatography was performed with an optimized two‐phase solvent system composed of n‐hexane‐ethyl acetate–methanol–water (3:5:4:5, v/v), where upper organic phase was added to 3 mmol/L triethylamine as a retainer and lower aqueous mobile phase was added to 3 mmol/L hydrochloric acid as an eluter. As a result, six aconitum alkaloids, including two lipo‐alkaloids (8‐lino‐14‐benzoylaconine, 8‐pal‐14‐benzoylaconine), three monoester‐diterpenoid alkaloids (14‐benzoylmesaconine, 14‐benzoylaconine, beyzoyldeoxyaconine), and one aconine alkaloid (neoline) were acquired from the plant at the same time. The anti‐inflammatory activities of the two new lipo‐alkaloids were compared to the six alkaloids in vitro, in cyclo‐oxygen‐ase‐2 inhibition assays. The separation mechanism of six alkaloids by pH‐zone‐refining counter‐current chromatography was illustrated.  相似文献   

5.
In this paper, an ultra high performance liquid chromatography tandem mass spectrometric (UPLC‐ESI‐MS/MS) method in positive ion mode was established to systematically identify and to compare the major aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Fuzi extract. A total twenty‐nine components including twenty‐five C19‐diterpenoid alkaloids and four C20‐diterpenoid alkaloids were identified in Fuzi extract. Thirteen of the parent components and five metabolites were detected in rat plasma and sixteen parent compounds and six metabolites in urine. These parent components found in rat plasma and urine were mainly C19‐diterpenoid alkaloids. All of the metabolites in vivo were demethylated metabolites (phase I metabolites), which suggested that demethylation was the major metabolic pathway of aconitum alkaloids in vivo. A comparison of the parent components in rat plasma and urine revealed that 3‐deoxyacontine was found in plasma but not in urine, while kalacolidine, senbusine and 16‐β‐hydroxycardiopetaline existed in urine but not in plasma, which indicated that most alkaloids components were disposed and excreted in prototype form. This research provides some important information for further metabolic investigations of Fuzi in vivo.  相似文献   

6.
The ripened seeds of Strychnos nux‐vomica L. have been extensively used as herbal medicines in Asian countries. Dihydroindole‐type alkaloids are not only the active constituents but also the toxicants in Strychnos. However, the simultaneous determination of these alkaloids in both crude and processed Semen Strychni is still lacking. The present study represents the first quantitation and relative quantitation assay of 12 dihydroindole‐type alkaloids in Strychnos nux‐vomica unprocessed and sand‐processed seeds using high‐performance liquid chromatography coupled with diode array detection and mass spectrometry. The relative concentration of ten alkaloids was calculated by semi‐quantification using the internal standard and their amounts in unprocessed and detoxified Semen Strychni were compared. We report here for the first time the significant increase of the two alkaloids, 19‐N‐methyl‐strychnine, and 2,3‐dimethoxy‐19‐N‐methyl‐strychnine, during the processing of Semen Strychni. Our study provides new insight into the true complexity of seed processing procedure and valuable information for assessing the efficacy and safety for clinical applications of Semen Strychni‐containing drugs.  相似文献   

7.
Pyrrolizidine alkaloids are the toxic components in Tussilago farfara L. Due to the lack of standard substances for quantitative analysis and traces of pyrrolizidine alkaloids in total alkaloids, the full quality control of Tussilago farfara L has been limited. In this study, we aimed to solve the difficulty of determination of pyrrolizidine alkaloids and identify more components in the total alkaloids. An on‐line preconcentration method has been applied to improve determining sensitivity of pyrrolizidine alkaloids in Tussilago farfara L. in which included field‐amplified sample stacking and sweeping in micellar electrokinetic capillary chromatography. The main parameters that affected separation and stacking efficiency were investigated in details. Under the optimal conditions, the sensitivity enhancement factors obtained by the developed method for the analytes were from 15‐ to 12‐fold, the limits of detection of senkirkine and senecionine were 2~5 μg/L. Senkirkine and senecionine have been detected in alkaloids ( c ) of Tussilago farfara L, along ferulic acid methyl ester and methyl caffeate. The developed method was also applied to the analysis of acid extraction ( a ) of Tussilago farfara L, and senkirkine could be detected directly. The results indicated that the developed method is feasible for the analysis of pyrrolizidine alkaloids in Tussilago farfara L with good recoveries.  相似文献   

8.
Experimental evidence is provided for the coherence of the double‐bond geometry and the occurrence of “secondary cyclizations” in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C‐mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so‐called “secondary cyclizations” from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19–C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis‐quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.  相似文献   

9.
Pyrrolizidine alkaloids are highly hepatotoxic natural chemicals that produce irreversible chronic and acute hepatotoxic effects on human beings. Purification of large amounts of pyrrolizidine alkaloids is necessary for toxicity studies. In this study, an efficient method for targeted analysis and purification of pyrrolizidine alkaloid cis/trans isomers from herbal materials was developed for the first time. Targeted analysis of the hepatotoxic pyrrolizidine alkaloids was performed by liquid chromatography with tandem mass spectrometry (precursor ion scan and daughter ion scan), and the purification of pyrrolizidine alkaloids was achieved with a mass‐directed auto purification system. The extraction and preparative liquid chromatography conditions were optimized. The developed method was applied to analysis of Gynura japonica (Thunb.) Juel., a herbal medicine traditionally used for detumescence and relieving pain but is potentially hepatotoxic as it contains pyrrolizidine alkaloids. Twelve pyrrolizidine alkaloids (six cis/trans isomer pairs) were identified with reference compounds or characterized by liquid chromatography with tandem mass spectrometry, and five individual pyrrolizidine alkaloids, including (E)‐seneciphylline, seneciphylline, integerrimine, senecionine, and seneciphyllinine, were prepared from G. japonica roots with high efficiency. The results of this work provide a new technique for the preparation of large amounts of pyrrolizidine alkaloid reference substances, which will also benefit toxicological studies of pyrrolizidine alkaloids and treatments for pyrrolizidine alkaloid‐induced toxicity.  相似文献   

10.
Methods based on triple quadrupole tandem mass spectrometry have been widely used and reported as highly selective and sensitive methods for quantifying substances of herbal medicines. However, most of them were limited to targeted components, due to the difficulties to optimize the multiple reaction monitoring transitions without authentic standards. This study proposed a novel strategy for non‐targeted optimization of multiple reaction monitoring method based on the diagnostic ion guided family classifications, tandem mass spectrometry database establishment, and transitions and collision energy screening. Applying this strategy, 59 Fritillaria alkaloids in Fritillariae Ussuriensis Bulbus have been classified, and 51 of these Fritillaria alkaloids were successfully detected by the optimal multiple reaction monitoring method. For semi‐quantification, the easy‐to‐obtain Fritillaria alkaloids of each type, such as verticinone for cevanine type and peimisine for jervine type, were used as the reference standards to calibrate the other Fritillaria alkaloids in the same type. The method was demonstrated a good linearity (R2 > 0.998) with satisfactory accuracy and precision, and the lower limits of quantification of verticinone and peimisine were estimated to be 0.076 and 0.216 pg, respectively. In addition, the results suggested that the proposed strategy might obtained high quality metabolomics data in discrimination of Fritillaria unibracteata and Fritillaria ussuriensis.  相似文献   

11.
Reported is the enantioselective total syntheses of mavacuran alkaloids, (+)‐taberdivarine H, (+)‐16‐hydroxymethyl‐pleiocarpamine, and (+)‐16‐epi‐pleiocarpamine, and their postulated biosynthetic precursor 16‐formyl‐pleiocarpamine. This family of monoterpene indole alkaloids is a target of choice since some of its members are subunits of intricate bisindole alkaloids such as bipleiophylline. Inspired by the biosynthetic hypothesis, an oxidative coupling approach from the geissoschizine framework to form the N1?C16 bond was explored. Quaternization of the aliphatic nitrogen center was key to achieving the oxidative coupling induced by KHMDS/I2 as it masks the nucleophilicity of the aliphatic nitrogen center and locks in the required cis conformation.  相似文献   

12.
There is a renewed interest in lobelia alkaloids because of their activity on the central nervous system. Lobeline, the most active of them, a nicotinic receptor ligand and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for metamphetamine abuse. In the present work, high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry in positive ion mode was used for investigating the alkaloid profile in Lobelia inflata L. Chromatographic separations were achieved on a Gemini C6‐phenyl reversed‐phase column providing good peak shape and improved selectivity. Being mostly 2,6‐disubstituted piperidines, lobelia alkaloids presented abundant [M + H]+ ions with typical fragmentation. Identification was possible from a few specific ions, especially those resulting from excision of one of the substituents. Based on fragmentation pattern of lobeline as reference compound, 52 alkaloids were identified in the aqueous methanolic extract of L. inflata in contrast to the previously known some 20. Structural variability of these alkaloids identified arises basically from their substituents which can be phenyl‐2‐ketoethyl‐ or phenyl‐2‐hydroxyethyl units as well as their methyl‐, ethyl‐ or propyl‐ homologues attached in different combinations. Several propyl homologue lobelia alkaloids and five hydroxypiperidine derivatives were found in the plant at the first time. In addition to 8‐O‐esters of 2‐monosubstituted piperidine alkaloids previously reported by us in L. inflata, a 3‐hydroxy‐3‐phenylpropanoic acid ester of hydroxyallosedamine ring‐substituted was also identified as a new natural product. High‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry can be successfully applied to Lobeliacae plant samples in the routine screening for new and known bioactive constituents, quality control of the crude drug, lobelia herba, alkaloid production studies, breeding and chemotaxonomy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The lateral root of Aconitum carmichaeli, a popular traditional Chinese medicine, has been widely used to treat rheumatic diseases. For decades, diterpenoid alkaloids have dominated the phytochemical and biomedical research on this plant. In this study, a rapid and sensitive method based on ultra high performance liquid chromatography coupled with linear ion trap‐Orbitrap tandem mass spectrometry was developed to characterize the diterpenoid alkaloids in Aconitum carmichaeli. Based on an optimized chromatographic condition, more than 120 diterpenoid alkaloids were separated with good resolution. Using a systematic strategy that combines high resolution separation, highly accurate mass measurements and a good understanding of the diagnostic fragment‐based fragmentation patterns, these diterpenoid alkaloids were identified or tentatively identified. The identification of these chemicals provided essential data for further phytochemical studies and toxicity research of Aconitum carmichaeli. Moreover, the ultra high performance liquid chromatography with linear ion trap‐Orbitrap mass spectrometry platform was an effective and accurate tool for rapid qualitative analysis of secondary metabolite productions from natural resources.  相似文献   

14.
Scopolia tangutica is a traditional Chinese medicine used for antispasmodic, anesthesia, analgesia, and sedation. Its medicinal activity is associated to alkaloid constituents, including tropane and cinnamamide types. Low content of alkaloids in plant makes them difficult to be isolated and identified. The present work developed an effective method to quickly characterize alkaloids from Scopolia tangutica by high‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry. Thirteen reference compounds were studied for their fragmentation pathways, including five tropane alkaloids and eight cinnamamide ones. Alkaloid constituent was analyzed by an optimized high‐performance liquid chromatography method and mass spectrometry analysis to achieve systematic characterization of alkaloids from Scopolia tangutica. As a result, 53 compounds were identified, including 21 tropane alkaloids (eight new ones), 18 caffeoyl ones (ten new ones) and 14 dicaffeoyl ones (seven new ones). It was important to provide rich information in phytochemical study and structure‐guided isolation of important compounds from this plant.  相似文献   

15.
The electrospray ionization (ESI) mass spectrometric behavior of five Stemona alkaloids, stemokerrin, oxystemokerrin, oxystemokerrilactone, oxystemokerrin N‐oxide and stemokerrin N‐oxide, was studied using an ESI tandem mass technique (MSn). These compounds, isolated from Stemona saxorum endemic in Vietnam, represent a class of alkaloids containing a pyrido[1,2‐a]azepine A,B‐ring core with a 1‐hydroxypropyl side chain attached to C‐4. Their fragmentation pathways were elucidated by ESI‐MSn results and the elemental composition of the major product ions was confirmed by accurate mass measurement. In order to rationalize some fragmentation pathways, the relative Gibbs free energies of some product ions were estimated using the B3LYP/6‐31+G(d) method. Based on the ESI‐MSn results of five reference compounds, a reversed‐phase high‐performance liquid chromatography with tandem mass spectrometry (RP‐HPLC/MSn) method was developed for the characterization of Stemona alkaloids with a pyrido[1,2‐a]azepine A,B‐ring core from the extract of S. saxorum. A total of 41 components were rapidly identified or tentatively characterized, of which 12 compounds were identified as Stemona alkaloids with a pyrido[1,2‐a]azepine A,B‐ring core, including four new compounds. This method is convenient and sensitive, especially for minor components in complex natural product extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Macleaya cordata (Willd) R. Br. is a medicinal plant. The most important bioactive compounds of M. cordata are alkaloids that have many biological activities including antifungal, anti‐inflammatory, and antitumor. In this study, an ionic‐liquid‐modified high‐speed counter‐current chromatography method was established to obtain alkaloids from the fruits of M. cordata. The conditions of ionic‐liquid‐modified high‐speed counter‐current chromatography, including solvent systems, the content of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4]), and the posttreatment of the ionic liquid, were investigated. Five alkaloids protopine, allocryptopine, sanguinarine, 8‐O‐demethylchelerythrine, and chelerythrine were separated from the extract of the fruits using a high speed counter‐current chromatography with two‐phase solvent system composed of dichloromethane/methanol/0.3 mol/L hydrochloric acid aqueous solution/[C4mim][BF4] (4:2:2:0.015, v/v). Their purities were 96.33, 95.56, 97.94, 96.22, and 97.90%, respectively. The results indicated that a small amount of ionic liquids as modifier of the two‐phase solvent system could shorten the separation time and improve the separation efficiency of the alkaloids from the fruits. The ionic‐liquid‐modified high‐speed counter‐current chromatography would provide a feasible way for highly effective separation of alkaloids from natural products.  相似文献   

17.
A new phytochemical study of the indigenous Brazilian species Hippeastrum papilio is reported herein. Three novel Amaryllidaceae alkaloids were isolated, including hippapiline ( 1 ), papiline ( 2 ), and 3‐O‐demethyl‐3‐O‐(3‐hydroxybutanoyl)haemanthamine ( 3 ). Their structures were determined by physical and spectroscopic methods. In addition, the known alkaloids, haemanthamine ( 4 ), galanthamine ( 5 ), narwedine ( 6 ), 11β‐hydroxygalanthamine ( 7 ), apogalanthamine ( 8 ), and 9‐O‐demethyllycosinine B ( 9 ) were identified. The unusual cis‐B/C‐ring fusion for the new homolycorine representative hippapiline was ratified by NMR and CD spectroscopy.  相似文献   

18.
A stationary phase (named QA C10) with quaternary ammonium embedded between a propyl and a decyl chain was synthesized by immobilization of N,N‐dimethyldecylamine on chloropropyl–silica surface. A set of representative neutral, basic, and acidic compounds was employed to evaluate its chromatographic properties. The results illustrated that QA C10 was a mixed‐mode stationary phase possessing both hydrophobic and ionic characteristics. The QA C10 stationary phase was further used for selective separation of alkaloids from Cortex phellodendri. Under acidic condition, alkaloids could be eluted in first 8 min, while other neutral and acidic fractions were retained better on QA C10 column. Then, obtained alkaloid fraction was analyzed by LC‐MS/MS and 22 alkaloids were identified. Our study confirmed the advantages and application potential of the QA C10 stationary phase for alkaloids separation.  相似文献   

19.
Papaver plants can produce diverse bioactive alkaloids. Papaver rhoeas Linnaeus (common poppy or corn poppy) is an annual flowering medicinal plant used for treating cough, sleep disorder, and as a sedative, pain reliever, and food. It contains various powerful alkaloids like rhoeadine, benzylisoquinoline, and proaporphine. To investigate and identify alkaloids in the aerial parts of P. rhoeas, samples were collected at different growth stages and analyzed using liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry. A liquid chromatography with mass spectrometry method was developed for the identification and metabolite profiling of alkaloids for P. rhoeas by comparing with Papaver somniferum. Eighteen alkaloids involved in benzylisoquinoline alkaloid biosynthesis were used to optimize the liquid chromatography gradient and mass spectrometry conditions. Fifty‐five alkaloids, including protoberberine, benzylisoquinoline, aporphine, benzophenanthridine, and rhoeadine‐type alkaloids, were identified authentically or tentatively by liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry in samples taken during various growth stages. Rhoeadine alkaloids were observed only in P. rhoeas samples, and codeine and morphine were tentatively identified in P. somniferum. The liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry method can be a powerful tool for the identification of diverse metabolites in the genus Papaver. These results may help understand the biosynthesis of alkaloids in P. rhoeas and evaluate the quality of this plant for possible medicinal applications.  相似文献   

20.
A high‐performance liquid chromatography/electrospray ionization multi‐stage tandem mass spectrometry (HPLC/ESI‐MSn) method was developed to analyze two structurally related groups of Amaryllidaceae alkaloids (AmAs), crinane‐ and tazettine‐type alkaloids, in the species Crinum latifolium and C. asiaticum, as well as different organs of C. latifolium. In ESI‐MSn spectra of the two types of alkaloids, characteristic fragmentation reactions were observed that allowed us to determine and differentiate them. Based on the fragmentation rules of reference standards, crinane‐type alkaloids displayed concurrent neutral loss of C2H5N (43 u) and C2H6N (44 u) as well as characteristic ions of m/z 213 and 211, whereas tazettine‐type alkaloids exhibited neutral loss of C3H7N (57 u) [or C2H5N (43 u), C3H7NO (73 u)] from the [M+H]+ and [M+H–H2O]+ ions. These were supported by quadrupole time‐of‐flight (Q‐Tof)‐MS/MS analysis. The chemical complexity of the mixture was resolved by profiling. The compositions of the main crinane‐ and tazettine‐type alkaloids in the above‐mentioned species and organs were also compared. Overall, 28 AmAs comprising 14 crinane‐type and 14 tazettine‐type alkaloids were identified and studied by MS. Among them, 14 AmAs were tentatively characterized from the two species for the first time. This method allowed a rapid analysis of alkaloid distribution and composition of Crinum species, and may also be used for quality control and screening of extracts designated for pharmaceutical application. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号